
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996 1

Curvilinear Component Analysis:

a Self-Organizing Neural Network for Nonlinear Mapping of Data Sets

Pierre Demartines and Jeanny H�erault

Abstract|We present a new strategy called \Curvilinear

Component Analysis" (CCA), for dimensionality reduction

and representation of multidimensional data sets. The prin-

ciple of CCA is a self-organized neural network performing

two tasks: Vector Quantization (VQ) of the submanifold in the

data set (input space) and nonlinear Projection (P) of these

quantizing vectors towards an output space, providing a re-

vealing unfolding of the submanifold. After learning, the

network has the ability to continuously map any new point

from one space into another: forward mapping of new points

in the input space, or backward mapping of an arbitrary po-

sition in the output space.

Keywords|Dimension Reduction, Self-Organizing Neural

Network, Nonlinear Mapping, Interactive Data Exploration.

I. Introduction

This algorithm was proposed (for example in [4] and [5])

as an improvement to the Kohonen Self-Organizing Maps

(SOM) [12]; the output is not a �xed lattice but a contin-

uous space able to take the shape of the submanifold. As

it turns out, the Projection part of CCA is similar in its

goal to other nonlinear mapping methods, such as Multi-

dimensional Scaling (MDS) [19] and Sammon's Nonlinear

Mapping (NLM) [18], in that it minimizes a cost function

based on inter-point distances in both input and output

spaces (for a review of such algorithms, see [2], [20], [14]).

However, CCA signi�cantly outperforms these algorithms

in several aspects:

1. The use of a new cost function, able to unfold strongly

nonlinear or even closed structures, and which allows

a selection of the scale at which the unfolding of the

submanifold has to take place.

2. Signi�cant speedup due to an original method of min-

imization.

3. Interactivity, as a result of this speed, in which the

user has control over the minimized function itself,

principally on the scale at which the distances have

to be preferably respected.

4. The user is helped in this task by a representation

of the mapping quality, called \dy � dx", which is the

joint distribution of input and output distances.

We observe experimentally that this human control gives

\more revealing" results than the ones obtained by auto-

matic methods or �xed cost functions, and does so in a

shorter period of time. This is of course subjective, but

not more than the concept itself of a \good mapping", and

as an excellent illustration it is shown in [10] that the op-

timal solutions provided by di�erent topological mappings

can be radically di�erent.

InstitutNational Polytechniquede Grenoble, Laboratoirede Traite-

ment d'Images et de Reconnaissance des Formes, F-38031 Grenoble,

France. Email: herault@tirf.inpg.fr, demartin@tirf.inpg.fr.

... ypy
1

... ξnξ
1

y
ixi

Fig. 1. Network structure of CCA and an example of its function:

here, a 2-D mapping of a text initially folded onto a 3-D \ypa-

per". First, the unfolding of the ypaper has been learnt, and

then the text has been projected using the mapping built between

input and output spaces.

The purpose of CCA is primarily to give a revealing rep-

resentation of data in low dimension, preparing a basis for

further clustering and classi�cation. We claim that this

kind of representation helps to understand the structure of

the data set and therefore to select the appropriate tech-

niques for further automatic processing. For example, in

the case of clustering, it has been shown [20] that human

analysts helped by mapping techniques signi�cantly out-

perform automatic clustering methods.

However, CCA can be more than a visualization tech-

nique, as shown in many applications described in [4] and

[6].

II. Learning algorithm

Quantization and nonlinear mapping are separately per-

formed by two layers of connections, as illustrated in �g. 1.

Each of the N neurons has two weight vectors. Input

vectors fx

i

; i = 1; : : : ; Ng are n-dimensional, while corre-

sponding output vectors fy

i

g are p-dimensional (p � n).

The input vectors x

i

are forced to become prototypes of

the distribution using any of the several existing VQ meth-

ods (see for example [1], [9], [5], [4]). However, since we

are interested to grasp the submanifold of the distribution

rather than the density along it, we may choose a method

which regularly quantizes the space covered by the data, re-

gardless of the density. Such a method is the \Competitive

Learning with Regularization" we introduced in [4].

The output layer must build a nonlinear mapping of the

input vectors. In order to do so, Euclidean distances be-

tween x

i

's: X

ij

= d(x

i

;x

j

) are considered. Corresponding

distances in the output space are Y

ij

= d(y

i

;y

j

). The goal

is to force Y

ij

to match X

ij

for each possible pair (i; j).

Since a perfect matching is not possible at all scales when

manifold \unfolding" is needed to reduce the dimension

2 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996

from n to p, a weighting function F (Y

ij

; �

y

) is introduced,

yielding the quadratic cost function:

E =

1

2

X

i

X

j 6=i

(X

ij

� Y

ij

)

2

F (Y

ij

; �

y

): (1)

Generally, F (Y

ij

; �

y

) is chosen as a bounded and monoti-

cally decreasing function, in order to favour local topology

conservation (like in SOM). Decreasing exponential, sig-

moid, or Lorentz function are all suitable choices. In the

simulations we report here, we used the simple step func-

tion: F (Y

ij

; �

y

) =

�

1 if Y

ij

� �

y

0 if Y

ij

> �

y

. Key points:

1. As in SOM, the weighting is done as a function of

output distances Y

ij

, and not input ones like in most

implementations of NLM. This recursive solution is the

only one to unfold strongly folded data.

2. F (Y

ij

; �

y

) should be bounded. A function like 1=Y

ij

,

mentioned as a possible variant for NLM [2], is not

appropriate because of too strong inuence of small

Y

ij

's.

3. �

y

(t) generally evolves with the time. It can be a �xed

schedule, like the neighborhood in SOM, but

4. �

y

can also be controlled by the user, allowing an

interactive selection of the scale at which the unfolding

takes place.

The minimization of the cost function (1) with respect

to the y

i

's is done with a new procedure that we introduce

below. Compared to other methods such as the stochastic

gradient descent (�y

i

� �r

i

E) or the steepest gradient

descent:

1. It saves a tremendous amount of computing time (see

�g. 4).

2. While the average of the updates is proportional to

the opposite of the gradient of E, it can temporar-

ily produce increases of E. This allows the algorithm

to eventually escape from local minima

1

of E, and in

practice we observe lower �nal cost by contrast with

gradient methods (see �g. 4).

Instead of moving one vector y

i

according to the sum of

every other y

j

's inuences, as it would be the case with a

stochastic gradient descent, we temporarily pin one y

i

and

move all the other y

j

around, without regard to interac-

tions amongst the y

j

. If we rewrite (1) as a sum of partial

costs:

E =

1

2

X

i

X

j 6=i

E

ij

; (2)

then the proposed rule is, given i (randomly chosen):

�y

j

(i) = �(t)r

i

E

ij

= ��(t)r

j

E

ij

: (3)

Similarly to usual stochastic gradient methods, �(t) de-

creases with the time, for example �(t) = �

0

=(1 + t).

Considering a quantized version of F (Y

ij

; �

y

) (that is,

with @F=@Y

ij

= 0), we obtain the simple expression, very

1

but we do not prove the convergence toward a global minimum

easy to understand and which works well in most cases:

�y

j

= �(t)F (Y

ij

; �

y

)(X

ij

� Y

ij

)

y

j

� y

i

Y

ij

8j 6= i: (4)

From the computational point of view, this rule is much

lighter than a stochastic gradient. For an adaptation cy-

cle of all units (except i), the complexity is only in O(N)

instead of O(N

2

). It is not necessary to compute all the

N (N�1)=2 distances in both input and output spaces, but

only the distances from unit i to the others. This speedup

is illustrated in �g. 4.

Let us consider �rst the cost variation �E, given i:

�E(i) =

X

j 6=i

(r

j

E)

T

(�y

j

) (5)

=

X

j 6=i

0

@

X

p 6=j

r

j

E

pj

1

A

T

(��(t)r

j

E

ij

)

= ��(t)

X

j 6=i

2

4

kr

j

E

ij

k

2

+

X

p 6=i;j

(r

j

E

pj

)

T

(r

j

E

ij

)

3

5

(6)

The second term under the sum can happen to be negative,

yielding a possible temporary increase of E. However, the

expectation

d

�y

j

of the move of a particular y

j

with respect

to all possible choices of i is:

d

�y

j

= ��

1

N

X

i

r

j

E

ij

= ��

1

N

r

j

E; (7)

which, put together with (5), yields

d

�E � 0. As a con-

sequence, the cost E can momentarily increase, but it de-

creases on average. This behavior is illustrated in �g. 4.

It is observed that a much deeper minimum is reached in

contrast to stochastic gradient or steepest descent.

This optimized rule is very e�cient: for a network of a

thousand of neurons (N = 1000) and with a linear mani-

fold, generally about �fty iterations are enough to reach a

perfectly organized output state (jX

ij

� Y

ij

j � 10

�6

of the

maximum distance X

ij

which is roughly the diameter of

the data set). When the submanifold is not linear (thus an

unfolding has to be done), it takes more steps to converge

(some thousands), but it is still much faster (in CPU time)

than a stochastic gradient descent.

III. \dy � dx" representation

In order to check the topology preservation of Kohonen

SOM, we have proposed in [3] a representation which is

called \dy � dx". It consists in the joint distribution of

weight distances and grid distances between pairs of neu-

rons: for each possible pair, one plots a point at position

[dy; dx], where dy is the physical distance between the neu-

rons (the distance on the grid) and dx the distance between

their weight vectors. For a well topology-preserving map-

ping, dy should be proportional to dx, at least for small

dy's. This representation is directly usable in the frame-

work of CCA: dx simply becomes X

ij

and dy becomes Y

ij

;

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996 3

Y ij

X ij

λy

αF Y ij λy,()

a

b

c

Fig. 2. Illustration of \dy � dx" representation, showing two di�er-

ent aspects of CCA: local projection and unfolding. The data is

spread (because of some noise) around a circular submanifold (a).

A nonlinear mapping toward a one-dimensional space is found by

CCA. The result (not shown here) is the average circle, split

somewhere and unfolded to lie on the one-dimensional output

space. (b): Global aspect of \dy � dx" representation, showing

the unfolding e�ect. (c): Zoom around the origin, showing the

local projection e�ect.

this actually corresponds to the \inter-point distances re-

construction plot" of Shepard and Carroll [19].

It is relatively easy to analyze a mapping by means of this

representation and to take the relevant action, for example

concerning the neighborhood parameter �

y

. For this reason

we plot the function �F (Y

ij

; �

y

) directly on the dy � dx

representation. The user can continuously change � and

�

y

with the mouse.

Interpretation (see �g. 2):

1. Correct matches (Y

ij

� X

ij

) give points close to the

line corresponding to the identity function. If the di-

mension reduction from n to p can be done by linear

projection, then the mapping is easily found and the

complete \dy � dx" characteristic lies on the identity

function. That generally suggests that one could try

a mapping with a smaller output dimension, where

unfolding would be necessary.

2. In this representation, a locally correct mapping is

shown by a distribution close to the identity function,

near the origin. On the other hand, unfolding is re-

vealed by bent and spread \dy � dx" characteristic

where Y

ij

> X

ij

in average.

3. Close to the origin, points that are above this line

(Y

ij

< X

ij

) can be interpreted as a local projection

(see �g. 2.c).

This evolution of �

y

(t) can be driven by an automatic

schedule, like the neighborhood radius in SOM for example.

However, we have noticed that, by tuning �

y

(t) by hand,

one can dramatically improve the accuracy of the mapping

and realize a trade-o� between global unfolding and local

projection qualities, only by observing the shape of \dy �

dx" representation.

The choice of another parameter has been hidden so far:

the output dimension. Ideally, it should be the dimension

of the submanifold. This can be roughly estimated by frac-

tal dimension analysis of the data set. However, noise in the

data and the small number of available points often make

this fractal analysis di�cult or impracticable. In particu-

a b

Fig. 3. Projection of a circle with a CCA network having learned a

small square. (a) Input space, with the weights quantizing the

learned distribution (small square), and the test distribution of

circular shape. (b) Output space, with output learned weights,

and the interpolation/extrapolation of the circle. The error of

extrapolation (here emphasized for purpose of visualization) is of

order of 0.1% of the diametra of the circle.

lar, due to the discrete nature of data sets, one has to select

a scale of observation (the limit used in the mathematical

formulation of fractal dimensions is not applicable).

We usually proceed as follow: a rough estimation of frac-

tal dimension is taken as a starting point for p. Then, we

tune the dimension considering the \dy � dx" representa-

tion, as explained above, which has been observed much

more accurate and informative.

IV. Continuous mapping and backward mapping

The relation x ! y is quantized by N prototypes

(x

i

! y

i

). To obtain the continuous mapping y

0

of any

supplementary point x

0

from the input distribution, con-

sidered as a temporary new prototype, the same cost func-

tion (1) as for the learning will be minimized, but only with

regard to the new corresponding y

0

. Thus, instead of mov-

ing each vector with respect to each other, only one point

y

0

is adapted according to a simple stochastic gradient de-

scent, while all the others are kept �xed. Therefore, this

point y

0

is searched with respect to the y

i

's in function of

the measured distances X

i0

between x

0

and the x

i

's. It

is actually a local mapping, and the initialization of y

0

is

made with the few �rst neighbors.

This procedure gives very accurate interpolation, but

also good extrapolation, which is a particularly unusual

feature for arti�cial neural networks, and which can truly

be called \generalization". It is illustrated in �g. 3. It is ho-

mogeneous with the learning algorithm and does not need

other parameters (such as radii or local Jacobian matrices).

However, each point of the continuous mapping needs sev-

eral adaptation steps, and the parameters schedule during

this \sub-convergence" is empiric up to now.

This continuous mapping is invertible: backward map-

ping can be obtained by simply swapping input and output

weights and spaces and using the same algorithm.

V. Comparison with other algorithms

� Classical MDS [21] and PCA [7] both �nd the axes

of maximum variance of input data and represent

them by a linear projection onto a subspace of re-

duced dimension [15]. In the case of Euclidean dis-

tances, the cost function to be minimized is E =

P

i

P

j 6=i

(X

2

ij

� Y

2

ij

) under constraint that Y

ij

� X

ij

4 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996

50
0.2

100
0.4

150
0.6

200
0.8

NLM: [s]
CCA: [s]

-6

-4

-2

2

4

6

Fig. 4. Comparison of the cost minimization for CCA and NLM. The

input space is quantizedby 256 points. The submanifold is simply

a square, not folded. It is then possible to plot the common part

of the costs of both algorithms: E

lin

=

1

2

P

i

P

j 6=i

(X

ij

�Y

ij

)

2

.

The vertical axis is logarithmic. The horizontal axis represents

the CPU time in seconds on a SUNSparc 10 mod 41. In order

to represent these plots on the same graph, it is necessary to

adopt a di�erent scale for the two algorithms. NLM: �nal time =

4mn40s; �nal E = 0:0025; after a violent expansion due to 1=X

ij

,

the cost decreases slowly and smoothly. CCA: �nal time = 0.72s;

�nal E < 10

�6

; the costs decreases on average, but increases oc-

casionally, to �nally reach quicker a much lower minimum. Note

that the complete convergence of CCA shown here is achieved

before the �rst iteration of NLM has been completed.

(because of projection). The minimum is quadratic in

the neighborhood of the solution. If non Euclidean

distances are considered, then the cost function is

E =

P

i

P

j 6=i

(x

T

i

x

j

� y

T

i

y

j

)

2

, which means a bi-

quadratic minimum, hence very sensitive to noise, re-

mains a linear approximation of nonlinear data struc-

ture.

� Non metric MDS [13] can take into account nonlinear

data structures. The cost function implies rank or-

ders of the inter-point distances rather than distances

themselves:

S =

P

i

P

j 6=i

(rank(X

ij

)� rank(Y

ij

))

2

P

i

P

j 6=i

rank(X

ij

)

(8)

The minimum is quadratic. The topology fails to be

correctly represented because of the quantization er-

rors introduced by rank ordering instead of true con-

tinuous distances.

� Shepard's Non-Linear Multidimensional Scaling has

the closest performances to CCA. However, due to a

very complex cost function:

� =

X

i

X

j 6=i

X

2

ij

Y

4

ij

,

0

@

X

i

X

j 6=i

1

Y

2

ij

1

A

2

; (9)

it is computationally very demanding. Moreover, this

cost function su�ers from three other drawbacks: as

the number of data points increases, 1) the global mini-

mum gets atter, leading to higher sensitivity to noise;

2) local minima get sharper and deeper and the walls

between them get higher, so it is very di�cult to es-

cape from them; 3) the cost function rapidly vanishes

to zero when some output distances are large. All

these considerations lead to severe di�culties to �nd

a solution, especially concerning the choice of initial

conditions.

� Sammon's NLM. Here, the cost function resembles

CCA's one:

E =

1

c

X

i

X

j<i

(X

ij

� Y

ij

)

2

1

X

ij

(10)

(with c =

P

i

P

j<i

X

ij

a normalization constant).

The F (Y

ij

; �

y

) of CCA is replaced in 1=X

ij

. This

means that short range distances of input space are fa-

vored, so the unfolding is very di�cult to obtain (see

�g. 5), depending on particular problems and on the

initial con�guration. Besides, points that are close in

the input space, yielding X

ij

� 0, disturb badly the

cost function.

Finally, due to the minimization algorithm, the NLM

has a complexity of O(N

2

) instead of O(N) for CCA.

This is illustrated in �g. 4.

� Kohonen SOM often have been thought to perform

non linear mapping, but when they succeed at that,

it is only by chance: they perform a vector quanti-

zation under the constraint of a prede�ned neighbor-

hood between neurons. Hence, they map a discretized

grid of given shape to some unknown input distribu-

tion regardless to the actual shape of the submanifold.

In contrast, CCA automatically �nds the appropriate

shape of the submanifold: the neurons \search" a suit-

able position in the output space such that the local

input topology is preserved as well as the global shape

of the submanifold.

� Growing Cell Structures [8], Neural Gas [16], and other

attempts to escape from the crisp grid of Kohonen

SOM generally lose the concept of an output or rep-

resentation space. Hence, the submanifold is well cap-

tured, but no method is provided to represent it. Gen-

erally, one can only consider local information as lo-

cal dimension, local connectivity, and so on. However,

since they are very fast VQ methods, they can be used

for the input layer of CCA.

� The generalization property is often not or badly

achieved by most networks whose target is to contin-

uously link an output with an input space, and which

generally perform interpolation only. For example,

with Radial Basis Functions (RBF) networks, or some

SOM implementations or with \Counter-Propagation

network" ([11]), this interpolation is made by compu-

tation of a center of gravity weighted by kernel func-

tions. Since these kernels are strictly positive (gen-

erally Gaussian), extrapolation is impossible. Thus,

since the quantization process does not place any vec-

tor at the distribution boundaries, there is a stripe

around the weight vectors which is not correctly

mapped.

VI. Artificial examples

In this section, we illustrate the main features of

CCA (speed and unfolding) with three synthetic examples

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996 5

INPUT CCA NLM

Fig. 5. Three synthetic examples, and the respective solutions of

CCA and NLM (discussion in the text). The \dy � dx" repre-

sentation is provided with the output space. Note also the �nal

position of �

y

, revealed by the step function shown in superposi-

tion to `dy�dx" plots for CCA. Every distributionwas quantized

with 500 points. Each run is stoppedwhen no visual improvement

is achieved. For each case, several runs have been done, and the

shortest time is retained. Sphere: CCA 8s, NLM 5mn41s; U-fold:

CCA 6s, NLM 13mn47s; 2-rings: CCA 9s, NLM 13mn3s.

(�g. 5). For comparison, the solution found by NLM (ver-

sion implementing the steepest gradient descent) is also

given.

Here for CCA, both � and �

y

have been interactively

tuned by the user during the run. First line: NLM is unable

to unfold the sphere (there is not much di�erence from a

linear projection), whereas CCA provides a good mapping.

Second line: the NLM reveals correctly the submanifold,

but with the curvilinear parameter shrunk. CCA unfolds

correctly this data set, without this shrinking e�ect. Third

line: in order to untangle the two rings, CCA has to break

them to be able to put them on the plane. Note the perfect

topological conservation for Y

ij

< �

y

, visible on \dy�dx".

The NLM is unable to extricate the rings.

VII. Real-world example: Phoneme

representation

The problem we address here concerns the �eld of speech

analysis. One of the classical techniques for the processing

of vowels is to feed the vocal signal into a bank of band-

pass �lters in order to classify the various con�gurations of

energies at the output of these �lters. Of course, the ambi-

ent acoustic noise is an important source of errors for the

classi�er. A recent method [17] consists in taking supple-

NLMCCAPCA

AAA
AAA
AAA
AAA

bank of filters

geometric data

so
un

d

image

i

a

ε
e

o
o

y

D o u
e

Fig. 6. Experience of audio and visual data fusion. First row: ac-

quisition system and theoretical \vocalic triangle". Second row:

reconstruction of the vocalic triangle in a two-dimensional space,

by three di�erent methods. See text for discussion.

mentary information, of visual kind (shape of the mouth),

in order to reduce the e�ect of noise. This is the principle

of data fusion.

In our studied case, the acoustic signal is analyzed by a

bank of 20 audio band-pass �lters, and in the mean time,

three visual parameters are recorded: width, height and

surface of the speaker's mouth. The data have been kindly

provided by Institut de la Communication Parl�ee, Greno-

ble, France. Fig. 6 shows the data acquisition system,

the theoretical \vocalic triangle", and the low-dimensional

view provided by three di�erent algorithms: PCA, CCA

and NLM. On these representations, lines between the cen-

troids of neighbor clusters have been added for visual com-

parison. The number of points quantizing the input space

is 1000.

The three projections, at a �rst look, seem very similar.

This is due to the fact the submanifold of the vocalic tri-

angle in the 23-dimensional input space is not too strongly

folded. However, a closer analysis reveals:

1. the clusters provided by the PCA are not too much

scattered, but they occasionally mix with their neigh-

bors.

2. with CCA, the clusters are better separated (the min-

imum interclass distance is the largest of the three

methods). The \dy � dx" representation also reveals

that the unfolding is the strongest for CCA. Typical

time for the run: 40 seconds.

3. the NLM also gives a good result: the clusters are

also linearly separable. However, 1{ the minimum in-

terclass distance is smaller than for CCA, 2{ the clus-

ter diameters are larger, 3{ several points are mapped

completely wrongly, even outside of the picture, and it

has not been possible, in spite of several runs, to avoid

6 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996

this problem, 4{ each run took about 30 minutes of

CPU.

VIII. Conclusion

CCA is a technique of data representation which bor-

rows both the ideas of multivariate data analysis and the

principles of self-organizing neural networks. In principle,

once the intrinsic dimension of the submanifold spanned

by the data has been found, it provides an interactive and

fast nonlinear mapping useful for data exploration. The

advantages of this method are:

1. unfolding of the submanifold, even in strongly nonlin-

ear cases,

2. local projection of the high-dimensional residual noise

or low-variance components on the image of the sub-

manifold,

3. due to a special adaptation rule, the algorithm is very

fast while experimentally shown to reach deeper min-

ima than simple gradient methods,

4. thanks to this speed, the user can interactively select

the range of distances preferably preserved,

5. after learning, the same algorithm applies to continu-

ous mapping and is capable of accurate interpolation

and extrapolation,

6. this continuous mapping can also be used in reverse

mode in order to map the output space into the in-

put submanifold, a property which can be useful for

further data mining considerations,

7. CCA is recursive and data-driven. Associated to a

continuously adaptive VQ scheme, it can be easily

adapted to provide pursuit abilities in the case of non-

stationary data.

Up to now CCA has been successfully applied to vari-

ous di�cult non-linear problems of data representation in

the frameworks of process surveillance, sensor fusion and

generation of metric spaces from non metric cost functions

([4], [6]). As for many of the algorithms of the same kind,

theoretical proofs of convergence are not available. Only

experimental data and intuitive considerations have been

derived. All that can be said at the moment is that CCA

overcomes many of the drawbacks of other nonlinear map-

ping algorithms and that it explicitly supports the concept

of \data unfolding" which we consider to be one of the �rst

steps for the understanding of nonlinear data structure.

References

[1] A. Ahalt, A. K. Krishnamurthy, Chen P., and D. E. Melton.

Competitive learning algorithms for vector quantization. Neural

Networks, 3:277{290, 1990.

[2] Y. Chien. Interactive Pattern Recognition. Marcel Dekker, Inc.,

New York, 1978.

[3] P. Demartines. Mesures d'organisationdu r�eseau de Kohonen. In

M. Cottrell, editor, Congr�es Satellite du Congr�es Europ�een de

Math�ematiques: Aspects Th�eoriques des R�eseaux de Neurones,

1992.

[4] P. Demartines. Analyse de donn�ees par r�eseaux de neurones

auto-organis�es. PhD thesis, Institut National Polytechnique de

Grenoble, 1994.

[5] P. Demartines and J. H�erault. CCA: \Curvilinear Component

Analysis". In GRETSI'95, Juan-les-pins, France, September

1995.

[6] P. Demartines and J. H�erault. The CurvilinearComponentAnal-

ysis. Technical Report TR-96-038, International Computer Sci-

ence Institute, September 1996.

[7] E. Diday, J. Lemaire, P. Pouget, and F. Testu. El�ements d'anal-

yse de donn�ees. Dunod, Paris, 1983.

[8] B. Fritzke. Let it grow | self-organizing feature maps with

problem dependent cell structure. In T. Kohonen, K. M�akisara,

O. Simula, and J. Kangas, editors, Arti�cial Neural Networks,

volume 1, pages 403{408, North-Holland, 1991. Elsevier Science

Publishers.

[9] A. Gersho and Robert M. Gray. Vector quantization and signal

compression. Kluwer Academic Publishers, London, 1992.

[10] G. J. Goodhill, S. Finch, and T. J. Sejnowski. Quantifying

neighbourhood preservation in topographicmappings. Technical

Report INC-9505, Institute for Neural Computation, November

1995.

[11] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory

of neural computation, volume 1 of Santa Fe Institute Lecture

Notes. Addison-Wesley Publishing Company, 1991.

[12] T. Kohonen. Self-Organization and Associative Memory.

Springer-Verlag, Berlin, 3rd edition, 1989.

[13] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical

method. Psychometrika, 29:115{129, June 1964.

[14] J. Mao and A. K. Jain. Arti�cial neural networks for feature

extraction and multivariate data projection. IEEE Transaction

on Neural Networks, 6(2):296{317, March 1995.

[15] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Anal-

ysis. Academic Press, London, 1979.

[16] T. Martinetz and K. Schulten. A neural gas network learns

topologies. In T. Kohonen et al., editor, IEEE International

Conference on Arti�cial Neural Networks, Espoo, Finland, vol-

ume 1, pages 397{407. Elsevier, 1991.

[17] J. Robert-Ribes, J.L. Schwarz, and P. Escudier. A comparison

of models for fusion of the auditory and the visual sensors in

speech perception. Arti�cial Intelligence Review, 9(4-5).

[18] J. W. Sammon. A nonlinear mapping algorithm for data struc-

ture analysis. IEEE Trans. Computers, C-18(5):401{409, 1969.

[19] R. N. Shepard and J. D. Carroll. Parametric representation of

nonlinear data structures. In P. R. Krishnaiah, editor, Inter-

national Symposium on Multivariate Analysis, pages 561{592.

Academic Press, 1965.

[20] W. Siedlecki, K. Siedlecka, and J. Sklansky. Experiments on

mapping techniques for exploratory pattern analysis. Pattern

Recognition, 21(5):431{438.

[21] W.S. Torgerson. Multidimensional scaling, i: theory and

method. Psychometrika, 17:401{419, 1952.

