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Curvilinear Component Analysis:

a Self-Organizing Neural Network for Nonlinear Mapping

of Data Sets

Pierre Demartines and Jeanny Hérault

Abstract— We present a new strategy called “Curvilinear
Component Analysis” (CCA), for dimensionality reduction
and representation of multidimensional data sets. The prin-
ciple of CCA is a self-organized neural network performing
two tasks: Vector Quantization (VQ) of the submanifold in the
data set (input space) and nonlinear Projection (P) of these
quantizing vectors towards an output space, providing a re-
vealing unfolding of the submanifold. After learning, the
network has the ability to continuously map any new point
from one space into another: forward mapping of new points
in the input space, or backward mapping of an arbitrary po-
sition in the output space.

Keywords— Dimension Reduction, Self-Organizing Neural
Network, Nonlinear Mapping, Interactive Data Exploration.

I. INTRODUCTION

This algorithm was proposed (for example in [4] and [5])
as an improvement to the Kohonen Self-Organizing Maps
(SOM) [12]; the output is not a fixed lattice but a contin-
uous space able to take the shape of the submanifold. As
it turns out, the Projection part of CCA is similar in its
goal to other nonlinear mapping methods, such as Multi-
dimensional Scaling (MDS) [19] and Sammon’s Nonlinear
Mapping (NLM) [18], in that it minimizes a cost function
based on inter-point distances in both input and output
spaces (for a review of such algorithms, see [2], [20], [14]).
However, CCA significantly outperforms these algorithms
in several aspects:

1. The use of a new cost function, able to unfold strongly

nonlinear or even closed structures, and which allows
a selection of the scale at which the unfolding of the
submanifold has to take place.

2. Significant speedup due to an original method of min-
imization.

3. Interactivity, as a result of this speed, in which the
user has control over the minimized function itself,
principally on the scale at which the distances have
to be preferably respected.

4. The user is helped in this task by a representation
of the mapping quality, called “dy — dx”, which is the
joint distribution of input and output distances.

We observe experimentally that this human control gives
“more revealing” results than the ones obtained by auto-
matic methods or fixed cost functions, and does so in a
shorter period of time. This is of course subjective, but
not more than the concept itself of a “good mapping”, and
as an excellent illustration it is shown in [10] that the op-
timal solutions provided by different topological mappings
can be radically different.
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Fig. 1. Network structure of CCA and an example of its function:
here, a 2-D mapping of a text initially folded onto a 3-D “flypa-
per”. First, the unfolding of the flypaper has been learnt, and
then the text has been projected using the mapping built between
input and output spaces.

The purpose of CCA is primarily to give a revealing rep-
resentation of data in low dimension, preparing a basis for
further clustering and classification. We claim that this
kind of representation helps to understand the structure of
the data set and therefore to select the appropriate tech-
niques for further automatic processing. For example, in
the case of clustering, it has been shown [20] that human
analysts helped by mapping techniques significantly out-
perform automatic clustering methods.

However, CCA can be more than a visualization tech-
nique, as shown in many applications described in [4] and

[6].
II. LEARNING ALGORITHM

Quantization and nonlinear mapping are separately per-
formed by two layers of connections, as illustrated in fig. 1.

Each of the N neurons has two weight vectors. Input
vectors {@; ;i=1,..., N} are n-dimensional, while corre-
sponding output vectors {y,} are p-dimensional (p < n).

The input vectors @; are forced to become prototypes of
the distribution using any of the several existing VQ meth-
ods (see for example [1], [9], [5], [4]). However, since we
are interested to grasp the submanifold of the distribution
rather than the density along it, we may choose a method
which regularly quantizes the space covered by the data, re-
gardless of the density. Such a method is the “Competitive
Learning with Regularization” we introduced in [4].

The output layer must build a nonlinear mapping of the
input vectors. In order to do so, Euclidean distances be-
tween @;’s: X;; = d(@;, ®;) are considered. Corresponding
distances in the output space are Y;; = d(y;,y;). The goal
is to force Y;; to match X;; for each possible pair (¢, ).
Since a perfect matching is not possible at all scales when
manifold “unfolding” is needed to reduce the dimension
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from n to p, a weighting function F(Y;;, Ay) is introduced,

yielding the quadratic cost function:

ZZ - (YZ]”\)

[

(1)

Generally, F(Y;;,Ay) is chosen as a bounded and monoti-
cally decreasing function, in order to favour local topology
conservation (like in SOM). Decreasing exponential, sig-
moid, or Lorentz function are all suitable choices. In the
simulations we report here, we used the simple step func-

tion: F(Y;;,Ay) = { é Yy <y . Key points:

if Yi; > Ay

1. As in SOM, the weighting is done as a function of
output distances Y;;, and not input ones like in most
implementations of NLM. This recursive solution is the
only one to unfold strongly folded data.

2. F(Yi;, Ay) should be bounded. A function like 1/Y;;,
mentioned as a possible variant for NLM [2], is not
appropriate because of too strong influence of small
}/ij ’s.

3. Ay(t) generally evolves with the time. It can be a fixed
schedule, like the neighborhood in SOM, but

4. Ay can also be controlled by the user, allowing an
wnteractive selection of the scale at which the unfolding
takes place.

The minimization of the cost function (1) with respect
to the y,’s is done with a new procedure that we introduce
below. Compared to other methods such as the stochastic
gradient descent (Ay, &~ —V;E) or the steepest gradient
descent:

1. Tt saves a tremendous amount of computing time (see

fig. 4).

2. While the average of the updates i1s proportional to
the opposite of the gradient of E| it can temporar-
ily produce increases of E. This allows the algorithm
to eventually escape from local minima' of F, and in
practice we observe lower final cost by contrast with
gradient methods (see fig. 4).

Instead of moving one vector y; according to the sum of
every other y;’s influences, as it would be the case with a
stochastic gradient descent, we temporarily pin one y,; and
move all the other y; around, without regard to interac-
tions amongst the y;. If we rewrite (1) as a sum of partial

costs: )
=322 B

i i

(2)
then the proposed rule is, given ¢ (randomly chosen):

Ay;(i) = a(t)ViEij = —a(t)V; Eij. (3)

Similarly to usual stochastic gradient methods, «(t) de-

creases with the time, for example a(t) = ao/(1 +1).
Considering a quantized version of F(Yj;, A,) (that is,

with 0F/0Y;; = 0), we obtain the simple expression, very

1but we do not prove the convergence toward a global minimum

easy to understand and which works well in most cases:

Y, —Y;

Ay = a()F(Yij, Ay)(Xij = Vi) v, ViFi| (4)

From the computational point of view, this rule 1s much
lighter than a stochastic gradient. For an adaptation cy-
cle of all units (except i), the complexity is only in O(N)
instead of O(N?). It is not necessary to compute all the
N(N —1)/2 distances in both input and output spaces, but
only the distances from unit ¢ to the others. This speedup
is illustrated in fig. 4.
Let us consider first the cost variation AE, given 2:

AE(i) = (Vi E)T (Ay;) (5)
i
= D> (D ViEy | (—a()V;Ey)
i#i \p#s

—a(®) Y IV EG I+ D> (ViEy)" (ViEy) [6)
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The second term under the sum can happen to be negative,
yielding a possible temporary increase of E. However, the
expectation Ay; of the move of a particular y; with respect
to all possible choices of 7 is:

(7)

S 1 1
Ay]» = —Ozﬁ Zi:VjEi]’ = —QNV]'E,

which, put together with (5), yields AL < 0. As a con-
sequence, the cost £ can momentarily increase, but it de-
creases on average. This behavior is illustrated in fig. 4.
It 1s observed that a much deeper minimum is reached in
contrast to stochastic gradient or steepest descent.

This optimized rule is very efficient: for a network of a
thousand of neurons (N = 1000) and with a linear mani-
fold, generally about fifty iterations are enough to reach a
perfectly organized output state (|X;; — Y;;| < 107° of the
maximum distance X;; which is roughly the diameter of
the data set). When the submanifold is not linear (thus an
unfolding has to be done), it takes more steps to converge
(some thousands), but it is still much faster (in CPU time)
than a stochastic gradient descent.

III.

In order to check the topology preservation of Kohonen
SOM, we have proposed in [3] a representation which is
called “dy — dx”. It consists in the joint distribution of
weight distances and grid distances between pairs of neu-
rons: for each possible pair, one plots a point at position
[dy, dz], where dy is the physical distance between the neu-
rons (the distance on the grid) and d the distance between
their weight vectors. For a well topology-preserving map-
ping, dy should be proportional to dz, at least for small
dy’s. This representation is directly usable in the frame-
work of CCA: dz simply becomes X;; and dy becomes Yj;;

“dy — de” REPRESENTATION
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Fig. 2. Ilustration of “dy — dz” representation, showing two differ-
ent aspects of CCA: local projection and unfolding. The data is
spread (because of some noise) around a circular submanifold (a).
A nonlinear mapping toward a one-dimensional space is found by
CCA. The result (not shown here) is the average circle, split
somewhere and unfolded to lie on the one-dimensional output
space. (b): Global aspect of “dy — dz” representation, showing
the unfolding effect. (c): Zoom around the origin, showing the
local projection effect.

this actually corresponds to the “inter-point distances re-
construction plot” of Shepard and Carroll [19].

It is relatively easy to analyze a mapping by means of this
representation and to take the relevant action, for example
concerning the neighborhood parameter A, . For this reason
we plot the function oF(Yj;, Ay) directly on the dy — d=
representation. The user can continuously change « and
Ay with the mouse.

Interpretation (see fig. 2):

1. Correct matches (Y;; = X;;) give points close to the
line corresponding to the identity function. If the di-
mension reduction from n to p can be done by linear
projection, then the mapping is easily found and the
complete “dy — dx” characteristic lies on the identity
function. That generally suggests that one could try
a mapping with a smaller output dimension, where
unfolding would be necessary.

2. In this representation, a locally correct mapping is
shown by a distribution close to the identity function,
near the origin. On the other hand, unfolding is re-
vealed by bent and spread “dy — dx” characteristic
where Y;; > X;; in average.

3. Close to the origin, points that are above this line
(Yi; < Xij) can be interpreted as a local projection
(see fig. 2.c).

This evolution of A,(t) can be driven by an automatic
schedule, like the neighborhood radius in SOM for example.
However, we have noticed that, by tuning A,(¢) by hand,
one can dramatically improve the accuracy of the mapping
and realize a trade-off between global unfolding and local
projection qualities, only by observing the shape of “dy —
dx” representation.

The choice of another parameter has been hidden so far:
the output dimension. Ideally, it should be the dimension
of the submanifold. This can be roughly estimated by frac-
tal dimension analysis of the data set. However, noise in the
data and the small number of available points often make
this fractal analysis difficult or impracticable. In particu-

Fig. 3. Projection of a circle with a CCA network having learned a
small square. (a) Input space, with the weights quantizing the
learned distribution (small square), and the test distribution of
circular shape. (b) Output space, with output learned weights,
and the interpolation/extrapolation of the circle. The error of
extrapolation (here emphasized for purpose of visualization) is of
order of 0.1% of the diametra of the circle.

lar, due to the discrete nature of data sets, one has to select
a scale of observation (the limit used in the mathematical
formulation of fractal dimensions is not applicable).

We usually proceed as follow: a rough estimation of frac-
tal dimension is taken as a starting point for p. Then, we
tune the dimension considering the “dy — dz” representa-
tion, as explained above, which has been observed much
more accurate and informative.

IV. CONTINUOUS MAPPING AND BACKWARD MAPPING

The relation ® — y is quantized by N prototypes
(#; — y;). To obtain the continuous mapping y, of any
supplementary point &g from the input distribution, con-
sidered as a temporary new prototype, the same cost func-
tion (1) as for the learning will be minimized, but only with
regard to the new corresponding y,. Thus, instead of mov-
ing each vector with respect to each other, only one point
Y, 1s adapted according to a simple stochastic gradient de-
scent, while all the others are kept fixed. Therefore, this
point ¥y, is searched with respect to the y,’s in function of
the measured distances X;g between &g and the x;’s. It
is actually a local mapping, and the initialization of y, is
made with the few first neighbors.

This procedure gives very accurate interpolation, but
also good extrapolation, which is a particularly unusual
feature for artificial neural networks, and which can truly
be called “generalization”. It is illustrated in fig. 3. It is ho-
mogeneous with the learning algorithm and does not need
other parameters (such as radii or local Jacobian matrices).
However, each point of the continuous mapping needs sev-
eral adaptation steps, and the parameters schedule during
this “sub-convergence” 1s empiric up to now.

This continuous mapping is invertible: backward map-
ping can be obtained by simply swapping input and output
weights and spaces and using the same algorithm.

V. COMPARISON WITH OTHER ALGORITHMS
o Classical MDS [21] and PCA [7] both find the axes

of maximum variance of input data and represent
them by a linear projection onto a subspace of re-
duced dimension [15]. In the case of Euclidean dis-
tances, the cost function to be minimized i1s F =

>, Zj#(XZZj — Yi) under constraint that ¥;; < Xj;
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Fig. 4. Comparison of the cost minimization for CCA and NLM. The

input space is quantized by 256 points. The submanifold is simply
a square, not folded. It is then possible to plot the common part
of the costs of both algorithms: F;,, = % Zl Z];u‘(XU -Yi;)%.
The vertical axis is logarithmic. The horizontal axis represents
the CPU time in seconds on a SUNSparc 10 mod 41. In order
to represent these plots on the same graph, it is necessary to
adopt a different scale for the two algorithms. NLM: final time =
4mn40s; final £ = 0.0025; after a violent expansion due to 1/X;;,
the cost decreases slowly and smoothly. CCA: final time = 0.72s;
final £ < 107%; the costs decreases on average, but increases oc-
casionally, to finally reach quicker a much lower minimum. Note
that the complete convergence of CCA shown here is achieved
before the first iteration of NLM has been completed.

(because of projection). The minimum is quadratic in
the neighborhood of the solution. If non Fuclidean
distances are considered, then the cost function is
E =3, Zj;ti(wiij - yZ»Ty]»)Z, which means a bi-
quadratic minimum, hence very sensitive to noise, re-
mains a linear approximation of nonlinear data struc-
ture.

« Non metric MDS [13] can take into account nonlinear
data structures. The cost function implies rank or-
ders of the inter-point distances rather than distances
themselves:

. 2 Zj;éi (rank(X;;) — rank(Yj;))?
B 2 Zj;éi rank(X;; )

The minimum is quadratic. The topology fails to be
correctly represented because of the quantization er-
rors introduced by rank ordering instead of true con-
tinuous distances.

o Shepard’s Non-Linear Multidimensional Scaling has
the closest performances to CCA. However, due to a
very complex cost function:

S

(8)

2

X2 1
R=20 y.i ZZW ’ )
T T

it 1s computationally very demanding. Moreover, this
cost function suffers from three other drawbacks: as
the number of data points increases, 1) the global mini-
mum gets flatter, leading to higher sensitivity to noise;
2) local minima get sharper and deeper and the walls
between them get higher, so it is very difficult to es-
cape from them; 3) the cost function rapidly vanishes
to zero when some output distances are large. All
these considerations lead to severe difficulties to find

a solution, especially concerning the choice of initial
conditions.

¢ Sammon’s NLM. Here, the cost function resembles

CCA’s one:
1 , 1
IS ST S R
—— 5
1 7<z2
(with ¢ = ZiZj<iXij a normalization constant).

The F(Yi;,Ay) of CCA is replaced in 1/X;;. This
means that short range distances of input space are fa-
vored, so the unfolding is very difficult to obtain (see
fig. 5), depending on particular problems and on the
initial configuration. Besides, points that are close in
the input space, yielding X;; ~ 0, disturb badly the
cost function.

Finally, due to the minimization algorithm, the NLM
has a complexity of O(N?) instead of O(N) for CCA.
This is illustrated in fig. 4.

o Kohonen SOM often have been thought to perform

non linear mapping, but when they succeed at that,
it 1s only by chance: they perform a vector quanti-
zation under the constraint of a predefined neighbor-
hood between neurons. Hence, they map a discretized
grid of given shape to some unknown input distribu-
tion regardless to the actual shape of the submanifold.
In contrast, CCA automatically finds the appropriate
shape of the submanifold: the neurons “search” a suit-
able position in the output space such that the local
input topology is preserved as well as the global shape
of the submanifold.

o Growing Cell Structures [8], Neural Gas [16], and other

attempts to escape from the crisp grid of Kohonen
SOM generally lose the concept of an output or rep-
resentation space. Hence, the submanifold is well cap-
tured, but no method is provided to represent it. Gen-
erally, one can only consider local information as lo-
cal dimension, local connectivity, and so on. However,
since they are very fast VQQ methods, they can be used
for the input layer of CCA.

e The generalization property is often not or badly

achieved by most networks whose target is to contin-
uously link an output with an input space, and which
generally perform interpolation only. For example,
with Radial Basis Functions (RBF) networks, or some
SOM implementations or with “Counter-Propagation
network” ([11]), this interpolation is made by compu-
tation of a center of gravity weighted by kernel func-
tions. Since these kernels are strictly positive (gen-
erally Gaussian), extrapolation is impossible. Thus,
since the quantization process does not place any vec-
tor at the distribution boundaries, there is a stripe
around the weight vectors which is not correctly
mapped.

VI. ARTIFICIAL EXAMPLES

In this section, we illustrate the main features of
CCA (speed and unfolding) with three synthetic examples
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Fig. 5. Three synthetic examples, and the respective solutions of
CCA and NLM (discussion in the text). The “dy — dz” repre-
sentation is provided with the output space. Note also the final
position of Ay, revealed by the step function shown in superposi-
tion to ‘dy —dxz” plots for CCA. Every distribution was quantized
with 500 points. Each run is stopped when no visual improvement
is achieved. For each case, several runs have been done, and the
shortest time is retained. Sphere: CCA 8s, NLM 5mn41s; U-fold:
CCA 6s, NLM 13mn47s; 2-rings: CCA 9s, NLM 13mn3s.

(fig. 5). For comparison, the solution found by NLM (ver-
sion implementing the steepest gradient descent) is also
given.

Here for CCA, both o and A, have been interactively
tuned by the user during the run. First line: NLM is unable
to unfold the sphere (there is not much difference from a
linear projection), whereas CCA provides a good mapping.
Second line: the NLM reveals correctly the submanifold,
but with the curvilinear parameter shrunk. CCA unfolds
correctly this data set, without this shrinking effect. Third
line: in order to untangle the two rings, CCA has to break
them to be able to put them on the plane. Note the perfect
topological conservation for Y;; < Ay, visible on “dy—dxz”.
The NLM 1s unable to extricate the rings.

VII. REAL-WORLD EXAMPLE: PHONEME
REPRESENTATION

The problem we address here concerns the field of speech
analysis. One of the classical techniques for the processing
of vowels is to feed the vocal signal into a bank of band-
pass filters in order to classify the various configurations of
energies at the output of these filters. Of course, the ambi-
ent acoustic noise is an important source of errors for the
classifier. A recent method [17] consists in taking supple-

bank of filters

Fig. 6. Experience of audio and visual data fusion. First row: ac-
quisition system and theoretical “vocalic triangle”. Second row:
reconstruction of the vocalic triangle in a two-dimensional space,
by three different methods. See text for discussion.

mentary information, of visual kind (shape of the mouth),
in order to reduce the effect of noise. This is the principle
of data fusion.

In our studied case, the acoustic signal is analyzed by a
bank of 20 audio band-pass filters, and in the mean time,
three visual parameters are recorded: width, height and
surface of the speaker’s mouth. The data have been kindly
provided by Institut de la Communication Parlée, Greno-
ble, France. Fig. 6 shows the data acquisition system,
the theoretical “vocalic triangle”, and the low-dimensional
view provided by three different algorithms: PCA, CCA
and NLM. On these representations, lines between the cen-
troids of neighbor clusters have been added for visual com-
parison. The number of points quantizing the input space
1s 1000.

The three projections, at a first look, seem very similar.
This is due to the fact the submanifold of the vocalic tri-
angle in the 23-dimensional input space is not too strongly
folded. However, a closer analysis reveals:

1. the clusters provided by the PCA are not too much
scattered, but they occasionally mix with their neigh-
bors.

2. with CCA, the clusters are better separated (the min-
imum interclass distance is the largest of the three
methods). The “dy — d#” representation also reveals
that the unfolding is the strongest for CCA. Typical
time for the run: 40 seconds.

3. the NLM also gives a good result: the clusters are
also linearly separable. However, 1— the minimum in-
terclass distance is smaller than for CCA | 2— the clus-
ter diameters are larger, 3— several points are mapped
completely wrongly, even outside of the picture, and it
has not been possible, in spite of several runs, to avoid
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this problem, 4— each run took about 30 minutes of

CPU.

VIII. CONCLUSION

CCA is a technique of data representation which bor-
rows both the ideas of multivariate data analysis and the
principles of self-organizing neural networks. In principle,
once the intrinsic dimension of the submanifold spanned
by the data has been found, it provides an interactive and
fast nonlinear mapping useful for data exploration. The
advantages of this method are:

1. unfolding of the submanifold, even in strongly nonlin-

ear cases,

2. local projection of the high-dimensional residual noise
or low-variance components on the image of the sub-
manifold,

3. due to a special adaptation rule, the algorithm is very
fast while experimentally shown to reach deeper min-
ima than simple gradient methods,

4. thanks to this speed, the user can interactively select
the range of distances preferably preserved,

5. after learning, the same algorithm applies to continu-
ous mapping and is capable of accurate interpolation
and extrapolation,

6. this continuous mapping can also be used in reverse
mode in order to map the output space into the in-
put submanifold, a property which can be useful for
further data mining considerations,

7. CCA is recursive and data-driven. Associated to a
continuously adaptive VQ scheme, it can be easily
adapted to provide pursuit abilities in the case of non-
stationary data.

Up to now CCA has been successfully applied to vari-
ous difficult non-linear problems of data representation in
the frameworks of process surveillance, sensor fusion and
generation of metric spaces from non metric cost functions
([4], [6]). As for many of the algorithms of the same kind,
theoretical proofs of convergence are not available. Only
experimental data and intuitive considerations have been
derived. All that can be said at the moment is that CCA
overcomes many of the drawbacks of other nonlinear map-
ping algorithms and that it explicitly supports the concept
of “data unfolding” which we consider to be one of the first
steps for the understanding of nonlinear data structure.
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