
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996 1Curvilinear Component Analysis:a Self-Organizing Neural Network for Nonlinear Mapping of Data SetsPierre Demartines and Jeanny H�eraultAbstract|We present a new strategy called \CurvilinearComponent Analysis" (CCA), for dimensionality reductionand representation of multidimensional data sets. The prin-ciple of CCA is a self-organized neural network performingtwo tasks: Vector Quantization (VQ) of the submanifold in thedata set (input space) and nonlinear Projection (P) of thesequantizing vectors towards an output space, providing a re-vealing unfolding of the submanifold. After learning, thenetwork has the ability to continuously map any new pointfrom one space into another: forward mapping of new pointsin the input space, or backward mapping of an arbitrary po-sition in the output space.Keywords|Dimension Reduction, Self-Organizing NeuralNetwork, Nonlinear Mapping, Interactive Data Exploration.I. IntroductionThis algorithm was proposed (for example in [4] and [5])as an improvement to the Kohonen Self-Organizing Maps(SOM) [12]; the output is not a �xed lattice but a contin-uous space able to take the shape of the submanifold. Asit turns out, the Projection part of CCA is similar in itsgoal to other nonlinear mapping methods, such as Multi-dimensional Scaling (MDS) [19] and Sammon's NonlinearMapping (NLM) [18], in that it minimizes a cost functionbased on inter-point distances in both input and outputspaces (for a review of such algorithms, see [2], [20], [14]).However, CCA signi�cantly outperforms these algorithmsin several aspects:1. The use of a new cost function, able to unfold stronglynonlinear or even closed structures, and which allowsa selection of the scale at which the unfolding of thesubmanifold has to take place.2. Signi�cant speedup due to an original method of min-imization.3. Interactivity, as a result of this speed, in which theuser has control over the minimized function itself,principally on the scale at which the distances haveto be preferably respected.4. The user is helped in this task by a representationof the mapping quality, called \dy � dx", which is thejoint distribution of input and output distances.We observe experimentally that this human control gives\more revealing" results than the ones obtained by auto-matic methods or �xed cost functions, and does so in ashorter period of time. This is of course subjective, butnot more than the concept itself of a \good mapping", andas an excellent illustration it is shown in [10] that the op-timal solutions provided by di�erent topological mappingscan be radically di�erent.InstitutNational Polytechniquede Grenoble, Laboratoirede Traite-ment d'Images et de Reconnaissance des Formes, F-38031 Grenoble,France. Email: herault@tirf.inpg.fr, demartin@tirf.inpg.fr.
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Fig. 1. Network structure of CCA and an example of its function:here, a 2-D mapping of a text initially folded onto a 3-D \
ypa-per". First, the unfolding of the 
ypaper has been learnt, andthen the text has been projected using the mapping built betweeninput and output spaces.The purpose of CCA is primarily to give a revealing rep-resentation of data in low dimension, preparing a basis forfurther clustering and classi�cation. We claim that thiskind of representation helps to understand the structure ofthe data set and therefore to select the appropriate tech-niques for further automatic processing. For example, inthe case of clustering, it has been shown [20] that humananalysts helped by mapping techniques signi�cantly out-perform automatic clustering methods.However, CCA can be more than a visualization tech-nique, as shown in many applications described in [4] and[6]. II. Learning algorithmQuantization and nonlinear mapping are separately per-formed by two layers of connections, as illustrated in �g. 1.Each of the N neurons has two weight vectors. Inputvectors fxi ; i = 1; : : : ; Ng are n-dimensional, while corre-sponding output vectors fyig are p-dimensional (p � n).The input vectors xi are forced to become prototypes ofthe distribution using any of the several existing VQ meth-ods (see for example [1], [9], [5], [4]). However, since weare interested to grasp the submanifold of the distributionrather than the density along it, we may choose a methodwhich regularly quantizes the space covered by the data, re-gardless of the density. Such a method is the \CompetitiveLearning with Regularization" we introduced in [4].The output layer must build a nonlinear mapping of theinput vectors. In order to do so, Euclidean distances be-tween xi's: Xij = d(xi;xj) are considered. Correspondingdistances in the output space are Yij = d(yi;yj). The goalis to force Yij to match Xij for each possible pair (i; j).Since a perfect matching is not possible at all scales whenmanifold \unfolding" is needed to reduce the dimension



2 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996from n to p, a weighting function F (Yij; �y) is introduced,yielding the quadratic cost function:E = 12Xi Xj 6=i (Xij � Yij)2F (Yij; �y): (1)Generally, F (Yij; �y) is chosen as a bounded and monoti-cally decreasing function, in order to favour local topologyconservation (like in SOM). Decreasing exponential, sig-moid, or Lorentz function are all suitable choices. In thesimulations we report here, we used the simple step func-tion: F (Yij; �y) = � 1 if Yij � �y0 if Yij > �y . Key points:1. As in SOM, the weighting is done as a function ofoutput distances Yij , and not input ones like in mostimplementations of NLM. This recursive solution is theonly one to unfold strongly folded data.2. F (Yij; �y) should be bounded. A function like 1=Yij,mentioned as a possible variant for NLM [2], is notappropriate because of too strong in
uence of smallYij's.3. �y(t) generally evolves with the time. It can be a �xedschedule, like the neighborhood in SOM, but4. �y can also be controlled by the user, allowing aninteractive selection of the scale at which the unfoldingtakes place.The minimization of the cost function (1) with respectto the yi's is done with a new procedure that we introducebelow. Compared to other methods such as the stochasticgradient descent (�yi � �riE) or the steepest gradientdescent:1. It saves a tremendous amount of computing time (see�g. 4).2. While the average of the updates is proportional tothe opposite of the gradient of E, it can temporar-ily produce increases of E. This allows the algorithmto eventually escape from local minima1 of E, and inpractice we observe lower �nal cost by contrast withgradient methods (see �g. 4).Instead of moving one vector yi according to the sum ofevery other yj's in
uences, as it would be the case with astochastic gradient descent, we temporarily pin one yi andmove all the other yj around, without regard to interac-tions amongst the yj. If we rewrite (1) as a sum of partialcosts: E = 12Xi Xj 6=i Eij; (2)then the proposed rule is, given i (randomly chosen):�yj(i) = �(t)riEij = ��(t)rjEij: (3)Similarly to usual stochastic gradient methods, �(t) de-creases with the time, for example �(t) = �0=(1 + t).Considering a quantized version of F (Yij; �y) (that is,with @F=@Yij = 0), we obtain the simple expression, very1but we do not prove the convergence toward a global minimum

easy to understand and which works well in most cases:�yj = �(t)F (Yij; �y)(Xij� Yij)yj � yiYij 8j 6= i: (4)From the computational point of view, this rule is muchlighter than a stochastic gradient. For an adaptation cy-cle of all units (except i), the complexity is only in O(N )instead of O(N2). It is not necessary to compute all theN (N�1)=2 distances in both input and output spaces, butonly the distances from unit i to the others. This speedupis illustrated in �g. 4.Let us consider �rst the cost variation �E, given i:�E(i) =Xj 6=i(rjE)T (�yj) (5)= Xj 6=i 0@Xp6=jrjEpj1AT (��(t)rjEij)= ��(t)Xj 6=i 24krjEijk2 + Xp6=i;j (rjEpj)T (rjEij)35(6)The second term under the sum can happen to be negative,yielding a possible temporary increase of E. However, theexpectation d�yj of the move of a particular yj with respectto all possible choices of i is:d�yj = �� 1N Xi rjEij = �� 1NrjE; (7)which, put together with (5), yields d�E � 0. As a con-sequence, the cost E can momentarily increase, but it de-creases on average. This behavior is illustrated in �g. 4.It is observed that a much deeper minimum is reached incontrast to stochastic gradient or steepest descent.This optimized rule is very e�cient: for a network of athousand of neurons (N = 1000) and with a linear mani-fold, generally about �fty iterations are enough to reach aperfectly organized output state (jXij � Yijj � 10�6 of themaximum distance Xij which is roughly the diameter ofthe data set). When the submanifold is not linear (thus anunfolding has to be done), it takes more steps to converge(some thousands), but it is still much faster (in CPU time)than a stochastic gradient descent.III. \dy � dx" representationIn order to check the topology preservation of KohonenSOM, we have proposed in [3] a representation which iscalled \dy � dx". It consists in the joint distribution ofweight distances and grid distances between pairs of neu-rons: for each possible pair, one plots a point at position[dy; dx], where dy is the physical distance between the neu-rons (the distance on the grid) and dx the distance betweentheir weight vectors. For a well topology-preserving map-ping, dy should be proportional to dx, at least for smalldy's. This representation is directly usable in the frame-work of CCA: dx simply becomes Xij and dy becomes Yij;
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cFig. 2. Illustration of \dy � dx" representation, showing two di�er-ent aspects of CCA: local projection and unfolding. The data isspread (because of some noise) around a circular submanifold (a).A nonlinear mapping toward a one-dimensional space is found byCCA. The result (not shown here) is the average circle, splitsomewhere and unfolded to lie on the one-dimensional outputspace. (b): Global aspect of \dy � dx" representation, showingthe unfolding e�ect. (c): Zoom around the origin, showing thelocal projection e�ect.this actually corresponds to the \inter-point distances re-construction plot" of Shepard and Carroll [19].It is relatively easy to analyze a mapping by means of thisrepresentation and to take the relevant action, for exampleconcerning the neighborhood parameter �y . For this reasonwe plot the function �F (Yij; �y) directly on the dy � dxrepresentation. The user can continuously change � and�y with the mouse.Interpretation (see �g. 2):1. Correct matches (Yij � Xij) give points close to theline corresponding to the identity function. If the di-mension reduction from n to p can be done by linearprojection, then the mapping is easily found and thecomplete \dy � dx" characteristic lies on the identityfunction. That generally suggests that one could trya mapping with a smaller output dimension, whereunfolding would be necessary.2. In this representation, a locally correct mapping isshown by a distribution close to the identity function,near the origin. On the other hand, unfolding is re-vealed by bent and spread \dy � dx" characteristicwhere Yij > Xij in average.3. Close to the origin, points that are above this line(Yij < Xij) can be interpreted as a local projection(see �g. 2.c).This evolution of �y(t) can be driven by an automaticschedule, like the neighborhood radius in SOM for example.However, we have noticed that, by tuning �y(t) by hand,one can dramatically improve the accuracy of the mappingand realize a trade-o� between global unfolding and localprojection qualities, only by observing the shape of \dy �dx" representation.The choice of another parameter has been hidden so far:the output dimension. Ideally, it should be the dimensionof the submanifold. This can be roughly estimated by frac-tal dimension analysis of the data set. However, noise in thedata and the small number of available points often makethis fractal analysis di�cult or impracticable. In particu-

a bFig. 3. Projection of a circle with a CCA network having learned asmall square. (a) Input space, with the weights quantizing thelearned distribution (small square), and the test distribution ofcircular shape. (b) Output space, with output learned weights,and the interpolation/extrapolation of the circle. The error ofextrapolation (here emphasized for purpose of visualization) is oforder of 0.1% of the diametra of the circle.lar, due to the discrete nature of data sets, one has to selecta scale of observation (the limit used in the mathematicalformulation of fractal dimensions is not applicable).We usually proceed as follow: a rough estimation of frac-tal dimension is taken as a starting point for p. Then, wetune the dimension considering the \dy � dx" representa-tion, as explained above, which has been observed muchmore accurate and informative.IV. Continuous mapping and backward mappingThe relation x ! y is quantized by N prototypes(xi ! yi). To obtain the continuous mapping y0 of anysupplementary point x0 from the input distribution, con-sidered as a temporary new prototype, the same cost func-tion (1) as for the learning will be minimized, but only withregard to the new corresponding y0. Thus, instead of mov-ing each vector with respect to each other, only one pointy0 is adapted according to a simple stochastic gradient de-scent, while all the others are kept �xed. Therefore, thispoint y0 is searched with respect to the yi's in function ofthe measured distances Xi0 between x0 and the xi's. Itis actually a local mapping, and the initialization of y0 ismade with the few �rst neighbors.This procedure gives very accurate interpolation, butalso good extrapolation, which is a particularly unusualfeature for arti�cial neural networks, and which can trulybe called \generalization". It is illustrated in �g. 3. It is ho-mogeneous with the learning algorithm and does not needother parameters (such as radii or local Jacobian matrices).However, each point of the continuous mapping needs sev-eral adaptation steps, and the parameters schedule duringthis \sub-convergence" is empiric up to now.This continuous mapping is invertible: backward map-ping can be obtained by simply swapping input and outputweights and spaces and using the same algorithm.V. Comparison with other algorithms� Classical MDS [21] and PCA [7] both �nd the axesof maximum variance of input data and representthem by a linear projection onto a subspace of re-duced dimension [15]. In the case of Euclidean dis-tances, the cost function to be minimized is E =PiPj 6=i(X2ij � Y 2ij) under constraint that Yij � Xij
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6Fig. 4. Comparison of the cost minimization for CCA and NLM. Theinput space is quantizedby 256 points. The submanifold is simplya square, not folded. It is then possible to plot the common partof the costs of both algorithms: Elin = 12PiPj 6=i(Xij�Yij )2.The vertical axis is logarithmic. The horizontal axis representsthe CPU time in seconds on a SUNSparc 10 mod 41. In orderto represent these plots on the same graph, it is necessary toadopt a di�erent scale for the two algorithms. NLM: �nal time =4mn40s; �nal E = 0:0025; after a violent expansion due to 1=Xij ,the cost decreases slowly and smoothly. CCA: �nal time = 0.72s;�nal E < 10�6; the costs decreases on average, but increases oc-casionally, to �nally reach quicker a much lower minimum. Notethat the complete convergence of CCA shown here is achievedbefore the �rst iteration of NLM has been completed.(because of projection). The minimum is quadratic inthe neighborhood of the solution. If non Euclideandistances are considered, then the cost function isE = PiPj 6=i(xTi xj � yTi yj)2, which means a bi-quadratic minimum, hence very sensitive to noise, re-mains a linear approximation of nonlinear data struc-ture.� Non metric MDS [13] can take into account nonlineardata structures. The cost function implies rank or-ders of the inter-point distances rather than distancesthemselves:S = PiPj 6=i (rank(Xij)� rank(Yij))2PiPj 6=i rank(Xij) (8)The minimum is quadratic. The topology fails to becorrectly represented because of the quantization er-rors introduced by rank ordering instead of true con-tinuous distances.� Shepard's Non-Linear Multidimensional Scaling hasthe closest performances to CCA. However, due to avery complex cost function:� =Xi Xj 6=i X2ijY 4ij ,0@Xi Xj 6=i 1Y 2ij1A2 ; (9)it is computationally very demanding. Moreover, thiscost function su�ers from three other drawbacks: asthe number of data points increases, 1) the global mini-mum gets 
atter, leading to higher sensitivity to noise;2) local minima get sharper and deeper and the wallsbetween them get higher, so it is very di�cult to es-cape from them; 3) the cost function rapidly vanishesto zero when some output distances are large. Allthese considerations lead to severe di�culties to �nd

a solution, especially concerning the choice of initialconditions.� Sammon's NLM. Here, the cost function resemblesCCA's one: E = 1cXi Xj<i(Xij� Yij)2 1Xij (10)(with c = PiPj<iXij a normalization constant).The F (Yij; �y) of CCA is replaced in 1=Xij. Thismeans that short range distances of input space are fa-vored, so the unfolding is very di�cult to obtain (see�g. 5), depending on particular problems and on theinitial con�guration. Besides, points that are close inthe input space, yielding Xij � 0, disturb badly thecost function.Finally, due to the minimization algorithm, the NLMhas a complexity of O(N2) instead of O(N ) for CCA.This is illustrated in �g. 4.� Kohonen SOM often have been thought to performnon linear mapping, but when they succeed at that,it is only by chance: they perform a vector quanti-zation under the constraint of a prede�ned neighbor-hood between neurons. Hence, they map a discretizedgrid of given shape to some unknown input distribu-tion regardless to the actual shape of the submanifold.In contrast, CCA automatically �nds the appropriateshape of the submanifold: the neurons \search" a suit-able position in the output space such that the localinput topology is preserved as well as the global shapeof the submanifold.� Growing Cell Structures [8], Neural Gas [16], and otherattempts to escape from the crisp grid of KohonenSOM generally lose the concept of an output or rep-resentation space. Hence, the submanifold is well cap-tured, but no method is provided to represent it. Gen-erally, one can only consider local information as lo-cal dimension, local connectivity, and so on. However,since they are very fast VQ methods, they can be usedfor the input layer of CCA.� The generalization property is often not or badlyachieved by most networks whose target is to contin-uously link an output with an input space, and whichgenerally perform interpolation only. For example,with Radial Basis Functions (RBF) networks, or someSOM implementations or with \Counter-Propagationnetwork" ([11]), this interpolation is made by compu-tation of a center of gravity weighted by kernel func-tions. Since these kernels are strictly positive (gen-erally Gaussian), extrapolation is impossible. Thus,since the quantization process does not place any vec-tor at the distribution boundaries, there is a stripearound the weight vectors which is not correctlymapped. VI. Artificial examplesIn this section, we illustrate the main features ofCCA (speed and unfolding) with three synthetic examples
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INPUT CCA NLM

Fig. 5. Three synthetic examples, and the respective solutions ofCCA and NLM (discussion in the text). The \dy � dx" repre-sentation is provided with the output space. Note also the �nalposition of �y, revealed by the step function shown in superposi-tion to `dy�dx" plots for CCA. Every distributionwas quantizedwith 500 points. Each run is stoppedwhen no visual improvementis achieved. For each case, several runs have been done, and theshortest time is retained. Sphere: CCA 8s, NLM 5mn41s; U-fold:CCA 6s, NLM 13mn47s; 2-rings: CCA 9s, NLM 13mn3s.(�g. 5). For comparison, the solution found by NLM (ver-sion implementing the steepest gradient descent) is alsogiven.Here for CCA, both � and �y have been interactivelytuned by the user during the run. First line: NLM is unableto unfold the sphere (there is not much di�erence from alinear projection), whereas CCA provides a good mapping.Second line: the NLM reveals correctly the submanifold,but with the curvilinear parameter shrunk. CCA unfoldscorrectly this data set, without this shrinking e�ect. Thirdline: in order to untangle the two rings, CCA has to breakthem to be able to put them on the plane. Note the perfecttopological conservation for Yij < �y, visible on \dy�dx".The NLM is unable to extricate the rings.VII. Real-world example: PhonemerepresentationThe problem we address here concerns the �eld of speechanalysis. One of the classical techniques for the processingof vowels is to feed the vocal signal into a bank of band-pass �lters in order to classify the various con�gurations ofenergies at the output of these �lters. Of course, the ambi-ent acoustic noise is an important source of errors for theclassi�er. A recent method [17] consists in taking supple-
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Fig. 6. Experience of audio and visual data fusion. First row: ac-quisition system and theoretical \vocalic triangle". Second row:reconstruction of the vocalic triangle in a two-dimensional space,by three di�erent methods. See text for discussion.mentary information, of visual kind (shape of the mouth),in order to reduce the e�ect of noise. This is the principleof data fusion.In our studied case, the acoustic signal is analyzed by abank of 20 audio band-pass �lters, and in the mean time,three visual parameters are recorded: width, height andsurface of the speaker's mouth. The data have been kindlyprovided by Institut de la Communication Parl�ee, Greno-ble, France. Fig. 6 shows the data acquisition system,the theoretical \vocalic triangle", and the low-dimensionalview provided by three di�erent algorithms: PCA, CCAand NLM. On these representations, lines between the cen-troids of neighbor clusters have been added for visual com-parison. The number of points quantizing the input spaceis 1000.The three projections, at a �rst look, seem very similar.This is due to the fact the submanifold of the vocalic tri-angle in the 23-dimensional input space is not too stronglyfolded. However, a closer analysis reveals:1. the clusters provided by the PCA are not too muchscattered, but they occasionally mix with their neigh-bors.2. with CCA, the clusters are better separated (the min-imum interclass distance is the largest of the threemethods). The \dy � dx" representation also revealsthat the unfolding is the strongest for CCA. Typicaltime for the run: 40 seconds.3. the NLM also gives a good result: the clusters arealso linearly separable. However, 1{ the minimum in-terclass distance is smaller than for CCA, 2{ the clus-ter diameters are larger, 3{ several points are mappedcompletely wrongly, even outside of the picture, and ithas not been possible, in spite of several runs, to avoid



6 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 1996this problem, 4{ each run took about 30 minutes ofCPU. VIII. ConclusionCCA is a technique of data representation which bor-rows both the ideas of multivariate data analysis and theprinciples of self-organizing neural networks. In principle,once the intrinsic dimension of the submanifold spannedby the data has been found, it provides an interactive andfast nonlinear mapping useful for data exploration. Theadvantages of this method are:1. unfolding of the submanifold, even in strongly nonlin-ear cases,2. local projection of the high-dimensional residual noiseor low-variance components on the image of the sub-manifold,3. due to a special adaptation rule, the algorithm is veryfast while experimentally shown to reach deeper min-ima than simple gradient methods,4. thanks to this speed, the user can interactively selectthe range of distances preferably preserved,5. after learning, the same algorithm applies to continu-ous mapping and is capable of accurate interpolationand extrapolation,6. this continuous mapping can also be used in reversemode in order to map the output space into the in-put submanifold, a property which can be useful forfurther data mining considerations,7. CCA is recursive and data-driven. Associated to acontinuously adaptive VQ scheme, it can be easilyadapted to provide pursuit abilities in the case of non-stationary data.Up to now CCA has been successfully applied to vari-ous di�cult non-linear problems of data representation inthe frameworks of process surveillance, sensor fusion andgeneration of metric spaces from non metric cost functions([4], [6]). As for many of the algorithms of the same kind,theoretical proofs of convergence are not available. Onlyexperimental data and intuitive considerations have beenderived. All that can be said at the moment is that CCAovercomes many of the drawbacks of other nonlinear map-ping algorithms and that it explicitly supports the conceptof \data unfolding" which we consider to be one of the �rststeps for the understanding of nonlinear data structure.References[1] A. Ahalt, A. K. Krishnamurthy, Chen P., and D. E. Melton.Competitive learning algorithms for vector quantization. NeuralNetworks, 3:277{290, 1990.[2] Y. Chien. Interactive Pattern Recognition. Marcel Dekker, Inc.,New York, 1978.[3] P. Demartines. Mesures d'organisationdu r�eseau de Kohonen. InM. Cottrell, editor, Congr�es Satellite du Congr�es Europ�een deMath�ematiques: Aspects Th�eoriques des R�eseaux de Neurones,1992.[4] P. Demartines. Analyse de donn�ees par r�eseaux de neuronesauto-organis�es. PhD thesis, Institut National Polytechnique deGrenoble, 1994.[5] P. Demartines and J. H�erault. CCA: \Curvilinear ComponentAnalysis". In GRETSI'95, Juan-les-pins, France, September1995.
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