
Published in proc. of Neuron̂�mes

93, pp. 411{424

Representation of Nonlinear Data Structures

through Fast VQP Neural Network

Pierre Demartines and Jeanny H�erault

INPG, Labo. TIRF, 46, av. F�elix-Viallet

F-38031 Grenoble, France

++33 76 57 45 45

Abstract. The Vector Quantization and Projection neural network (VQP) is a kind of Self-Organizing

Map (SOM) where neurons are not �xed on an a priori de�ned discrete lattice, as in Kohonen maps:

they �nd their position in a continuous output projection space through a self-learning algorithm.

The main property is therefore the ability to map arbitrary shapes of input distribution, and to

project them in a non-linear way, even if the input data sub-manifold is strongly folded. This gives

a useful representation of redundant data structures where Principal Components Analysis (PCA) or

similar linear techniques fail to reduce to relevant subsets of parameters. Another interesting feature

is that, because of a continuous learning scheme, the network remains adaptative, being able to react

to an input distribution change. The �rst presentation of VQP [?] was done with a simple projection

learning scheme and a classical vector quantization (VQ) algorithm, which su�ered from the usual

slow rates of convergence of classical algorithms. After a discussion on some VQ algorithms aspects,

an optimized version of VQP algorithm is presented.

Keywords: Self-Organizing Maps, Data Analysis, Non-linear Projection, Data Redundancy, High

Dimensional Spaces.

R�esum�e. Le r�eseau \Vector Quantization and Projection" (VQP) est une sorte de carte auto-

organisatrice o�u les neurones ne sont pas �x�es sur une grille d�e�nie �a priori, comme dans les cartes

de Kohonen: ils trouvent leur position dans un espace continu de projection par un algorithme

d'auto-apprentissage. La propri�et�e principale est la possibilit�e de repr�esenter des formes arbitraires

de distribution d'entr�ee, et de les projeter de mani�ere non lin�eaire, même lorsque le sous-espace des

donn�ees est fortement pli�e. Ceci fournit une repr�esentation utile de structures de donn�ees redondantes

l�a o�u l'Analyse en Composante Principale (ACP) ou des techniques similaires sont incapables de trou-

ver un sous-ensemble ad�equat de param�etres donnant une repr�esentation r�ev�elatrice. Un autre aspect

int�eressant est que, grâce �a un apprentissage continu, le r�eseau reste toujours adaptatif et capable de

se r�eadapter �a un changement de distribution d'entr�ee. Dans sa premi�ere forme [5], VQP utilisait une

m�ethode de projection simple et un algorithme de quanti�cation vectorielle classique, et convergeait

relativement lentement. Apr�es une discussion sur quelques aspects de la quanti�cation vectorielle,

une version optimis�ee de VQP est pr�esent�ee.

Mots cl�es: Cartes auto-organisatrices, analyse de donn�ees, projection non lin�eaire, redondance de

donn�ees, dimensions �elev�ees.

411

1 Introduction

The main purpose of Data Analysis is to �nd hidden relations within a given high-dimensional

data set, reducing it to a lower-dimensional space of underlying parameters, called the variety

of the data space.

A well known classical technique is the Principal Component Analysis (PCA), which con-

sists to �nd p orthogonal axes of largest standard deviation in the n-dimensional data space,

and then to project the data set onto the subspace of this basis of p axes. Since it is a linear

projection, this technique fails to emphasize strongly non-linear dependance between variables

of the data set.

Model �tting is then an alternative technique, whose major drawback is that a relevant

parametric model of the data has �rst to be de�ned, before to �nd the correct parameters.

This is generally a di�cult (not to say impossible) task when the dimension is high. It generally

requires human expertise and knowledge of the analyzed phenomenon.

Statisticians are today working on several techniques that generally consist in some kind

of particuliar PCA where the metric is locally computed [2]. In fact, these techniques are

computationally expensive, and they generally only emphasize the presence of groups within

the data set.

In neural networks �eld, in margin of several techniques belonging to the PCA [13, 17, 16],

Kohonen Self-Organizing Maps (SOM) [9] have shown their ability to discover features in

an unknown data set, by mapping its submanifold with a neuron grid. This property is

discussed in [1] for economic data analysis. Because of the ability of SOM to map distributions

with strongly non-linear topology, they overcome PCA methods on this aspects. However, an

important drawback is that the projection shape is �xed a priori to a rectangular grid. This

implies strong distorsions in many cases, and also the well-known problem of dead units, typical

to most of the competitive learning algorithms, that consists in leaving some units out of the

data distribution. Examples of such phenomenons are given in �g. 1.

(a) (b)

Figure 1: Kohonen Maps imperfections due to the mapping of input data distributions with an a priori

�xed rectangular grid of neurons. (a) L shaped distribution. (b) distribution within two interleaved

rings.

In [5], we introduced a new self-organizing algorithm, called Vector Quantization and Pro-

jection (VQP), which consists in a kind of SOM where neurons are not �xed on a de�ned lattice

as in Kohonen Maps. In VQP, neurons �nd their position in the output (or projection) space

for whose the only given parameter is the dimension. Thus, the network is able to map any

kind of distribution shapes. However, in its original version, the VQP network involved simple

algorithms based on winner-take-all schemes that su�ered from slow rates of convergence.

We provide here in the following:

1. a presentation of the VQP neural network structure,

2. an overview of some vector quantization algorithms aspects, where bene�ts of winner-

take-most schemes are discussed and taken into account in a e�cient VQ algorithm

design,

412

3. an optimized version of the Projection learning rules, which now take into account all

units at each time, and,

4. some simple examples which illustrates the VQP algorithm.

2 The VQP network

The VQP function is inspired from the Kohonen maps, whose two main features are:

� The Vector Quantization property, for which the particular structure of the SOM algo-

rithm is interesting because it reduces the number of dead units (though not completely

avoiding them), that is, the number of units out of the input distribution [7].

� The topologically correct projection, where neighbour neurons have neighbour synaptic

weights, that is, small distances in the output space (the space of the neuron grid) re
ect

small distances in the input space.

The VQP network presents both these features, but does not �x any particular a priori

de�ned shape, as a rectangular or hexagonal map. The network is composed of two connection

layers as shown in �gure 2.

WoutWin

...... ypxnx
1

y
1

Figure 2: Structure of the VQP network. Here, the input distribution is in 3 dimensions with strongly

non-linear relations. The algorithm retrieves the original structure in 2 dimensions, by minimizing

the local topology distorsion.

The �rst layer realizes a vector quantization of the input distribution. The second layer

reproduces the local con�guration of the �rst one in a self-organized way. The aim of the

network is to project the n-dimensional input vector x = [x

1

; : : : ; x

n

]

T

to a p-dimensional

space, the result being the output vector y = [y

1

; : : : ; y

p

]

T

, preserving as much as possible

the topological information. The de�nition of output vector y is not supervised; the only

constraint attached to it is to try to mimic, at least locally, the topology (in term of distances

conservation) of the input space. Only the dimension p of y is a priori �xed. As well as in

Kohonen maps, where neurons may be considered to point in the input space with their own

weight vector, here, each neuron i points to W

in;i

in the input space. But, in addition, it

points also to a corresponding position W

out;i

in the output space, in contrast to Kohonen

Maps where this position is the physical location of the neuron in the grid.

When an input vector x is presented, each neuron i computes an activity a

i

re
ecting the

proximity of W

in;i

to the vector x through a radial kernel. Such a kernel could be for example

the Gaussian function of the euclidean distance:

a

i

= exp

�

kx�W

in;i

k

2

�

2

i

!

(1)

413

where kx�W

in;i

k is the euclidean distance between the input vector x and the input weight

W

in;i

of neuron i, while �

i

is the in
uence radius of the neuron i.

More generally, the kernel should depend of the output dimension p. Thus,

a

i

= K

p

(kx�W

in;i

k) (2)

Then, the output projection y is computed as the sum of all output vectors, weighted by the

neuron activities (this is a barycentre computation within W

out

, with neuron activities a

i

as

weighting factors):

y =

P

N

i=1

a

i

W

out;i

P

N

i=1

a

i

(3)

where N is the number of neurons. The adapted values through self-learning are the input

matrix W

in

, the in
uence radius �

i

of each neuron i, and the output matrixW

out

.

Let us remark that this projection is continuous, thus input regions between several W

in;i

will be projected between the corresponding output vectors W

out;i

.

Another useful feature of this structure is its ability to perform inverse mapping: therefore,

it can be used to retrieve in the input space the corresponding vector of a given output position.

This is simply done by exchanging W

in

, W

out

, resp. x and y in (1) and (3).

The two emerging problems are the learning of vector quantization of input data, then the

learning of the projections.

3 Vector Quantization layer

3.1 VQ generalities

Generally, the goal to reach in vector quantizer design is to �nd a codebook which minimizes

the expectation value of the distorsion, measured as the error made by approximating an input

vector by a code vector representing it. The most widely used algorithm for vector quantizer

design is the Generalized Lloyd Algorithm (GLA) [11], also refered to, in a slightly di�erent

form, as \k-means" algorithm. In essence, this algorithm satis�es two necessary conditions to

make optimal quanti�cation, i.e. centroid condition and nearest neighbor condition. The near-

est neighbor condition implies that each input vector is represented by the nearest codevector

(the codevector at the shortest euclidean distance from the input). The centroid condition is

that each codevector has to be the center of gravity of its domination region, de�ned as the

partition of the input space represented by the codevector.

The GLA is the direct implementation of both these conditions: at each iteration, �nd the

partition S

i

of the training set X with the nearest neighbor condition (for each codevectorW

i

,

�nd its domination region (also called Voronoi region) S

i

= fx 2 X j kx�W

i

k � kx�W

j

k

8j 6= ig), then, apply the centroid condition to adjust codevectors (W

i

 E(S

i

), with E(S

i

)

the mean of S

i

). This is a batch algorithm for which the quadratic distorsion D(W) =

P

i

E(kx�W

i

k

2

)

�

�

�

x2S

i

monotically decreases, thus often falling in local minimum since D(W)

is generally not convex [19].

3.2 Winner-take-all algorithms

The neural \on-line" equivalent of the GLA is generally refered to as Competitive Learning

(CL). In this algorithm, each iteration consists of a presentation of an input vector to the

network, which �nds a \winner" neuron w whose weights vector W

w

is the nearest of the

input x:

w j kx�W

w

k � kx�W

j

k 8j 6= w (4)

then adapt the winner's weights towards the input (W

w

 W

w

+ �(x�W

w

)).

414

In the previous version of VQP network [5], the �rst layer was a slightly modi�ed com-

petitive learning VQ, where the winner was not found by the euclidean minimal distance, but

using a maximal activity computed through gaussian kernels. This was not equivalent since

each neuron had its own kernel radius, adapted in order to favorize units with low winning

rate.

All these algorithms have poor convergence rates, especially for large numbers of units,

because each input vector causes the adaptation of only one unit. This is the problem of

\winner-take-all" algorithms. Therefore, it seemed desirable to implement an algorithm where

more than one unit is adapted at each iteration. The problem is then to properly de�ne a

function G(i;x) > 0 for each unit i, which will be used in the learning rule:

W

i

 W

i

+ �

i

G(i;x)(x�W

i

) 8i (5)

This function will be greater for the winner, leading to the concept of \winner-take-most"

algorithms described in the following lines.

3.3 Winner-take-most algorithms

In \winner-take-most" algorithms, the winner is moved towards the input vector, but the

other units are also moved, with a smaller step-size. However, it is easily understandable

that adaptation computed as a continuous function of the distances may cause several units

to merge together. In fact, two superposed vectors cannot be separated by such adaptation

function, because for each input x, both will be adapted with the same value. Thus, it appears

necessary to unlink the adaptation factor from the euclidean distance. In competitive learning,

this is simply done by setting

G(i;x) =

(

1 if i = w

0 otherwise

(6)

But, as said before, this is a winner-take-all algorithm, no longer a winner-take-most one.

Moreover, if G(i;x) is de�ned positive and is only a function of individual distances

kx�W

i

k (without a kind of competition or mutual inhibition), all units will merge together

on the expectation value of the input, E(x).

Let us observe how some algorithms adapting more than one unit per step unlink adaptation

function G(i;x) from the euclidean distance:

3.3.1 Kohonen algorithm

In Kohonen's self-organizing maps [8, 9, 10, 15, 14], once the euclidean winner has been found,

the adaptation factor is computed in function of the lateral distance d(i; w) along the grid,

where w is the winner index:

G(i;x) = exp(�d

2

(i; w)=�

2

) (7)

(gaussian neighborhood) where � is a neighborhood radius decreasing with the time, or:

G(i;x) =

(

1 if d(i; w) � �

0 otherwise

(8)

(rectangular neighborhood) where � is also decreasing with the time.

Since in the map (unlike in VQP network) the neurons are �xed on a discrete lattice, two

neurons with the same weights vector, though being at the same distance of any input x, can

be separated because of their adaptation factor di�ering through (7) or (8).

415

3.3.2 Stochastic Relaxation Scheme

A recent VQ algorithm is the Stochastic Relaxation Scheme (SRS), introduced by Yair et

al. [19]. In this algorithm, all units are updated toward the input vector with a probability

computed in order to comply with the Gibbs distribution:

P (i) =

exp

�

�

kx�W

i

k

2

T

�

P

N

j=1

exp

�

�

kx�W

j

k

2

T

�

(9)

where T is a parameter called \temperature", in reference to simulated annealing algorithms.

For high temperatures, all units are adapted with about the same probability lim

T!1

P (i) =

1=N . When the temperature T ! 0, P (i) ! 1 for the euclidean winner (i = w), while

P (i) ! 0 8i 6= w. That is, the algorithm evolves from a stochastic scheme to a simple

Competitive Learning, while the temperature decreases.

The adaptation function is then:

G(i;x) =

(

1 with probability P = P (i)

0 else

(10)

Under certain conditions that are discussed in [20], this scheme is able to avoid local dis-

torsion minima, thus achieving globally optimal quantization. It is however noted to have low

convergence rate, since the transition rate becomes smaller for low temperatures.

3.3.3 Soft Competition Scheme

In order to solve the problem of low transition rate, the same authors propose in [19] another

algorithm, the Soft Competition Scheme (SCS), which is a deterministic version of the SRS.

There, G(i;x) is no longer a binary random value of probability P (i), but actually takes the

value of (9):

G(i;x) = P (i) (11)

where P (i) is the expression (9).

Additionnaly, in order to favourize units that have not been moved for a long time, each

unit has its own �

i

computed as:

�

i

(n) =

1 +

n�1

X

k=1

G

k

(i;x)

!

�1

; (12)

where k represents all previous steps (k = f1; : : : ; n � 1g), and G

k

(i) stands for G(i;x) at

iteration k.

For both algorithms (SRS and SCS), we �nd in (9) how distances and adaptation factors

are unlinked: P (i) depends on the selectivity of unit i, rather than on the only euclidean

distance. The selectivity of unit i is expressed in term of all distances between input vector

and units weights. This implements a kind of competition between units, where all units have

approximatively the same value P (i) for high temperatures, but which converges asymptotically

to a simple winner-take-all competitive learning (6) when the temperature T ! 0.

Unfortunately, since in the SCS G(i;x) is no longer stochastic but continuous with the

euclidean distance, units merged together are impossible to separate, on the contrary of the

SRS. In practice, it can be observed that, for certain temperature schedules, units do actually

merge together and become quite di�cult to separate.

416

Another drawback to the SCS is its slow rate of convergence (slower than the GLA).

Moreover, the quality of the resulting quantization depends on the temperature schedule,

which is deeply discussed in [19].

Under certain conditions for this temperature schedule, and with a �ne tuned method of

�

i

reinitialization which aims to avoid \cristallization" in local minima, the SCS is able to

achieve better quantization (about 1; 5dB of SNR in mean) than the GLA, however after a

longer time.

3.3.4 Neural-gas algorithm

Recently, Martinetz and Schulten [12, 18] have introduced a new VQ algorithm, called \neural-

gas". In this algorithm, for each iteration, all units are sorted according to their distance to

the input. A \rank of closeness" k(i) is therefore attributed to each unit i, so that:

�

0

< �

1

< : : : < �

k

< �

k+1

< : : : < �

N�1

(13)

with:

�

k

=

x�W

k(i)

 (14)

The �rst unit (of rank k = 0) is the euclidean winner, while the second unit (rank k = 1)

comes just after, and so on. The adaptation factor is then computed as:

G(i) = exp

�

k(i)

�

!

(15)

where k(i) is the rank of unit i, and � a parameter decreasing with the time. The weights of

the units are adapted according to (16):

W

i

 W

i

+ �

i

G(i;x)(x�W

i

) 8i (16)

The algorithm could be seen as a kind of Kohonen Map with monodimensional lattice,

where the topology is rede�ned at each iteration, with the winner at an extremity of the map.

Here, the unlinking e�ect results from the fact that, for ex �quo units, ranking is chosen at

random.

Parameters � and � are computed through the same time schedule:

r = r

i

�

r

f

r

i

�

t=t

max

(17)

where r

i

is the initial value of the parameter, while r

f

is the �nal one, that is, the one got at

iteration t = t

max

.

This algorithm is not only very interesting in its concept (because it looks like SOM). It also

achieves very homogenous quantization with about the same speed (for relevant parameters

�

i

, �

f

, �

i

, �

f

and t

max

) than Kohonen Maps.

Unfortunately, it requires relatively large amount of time for the sort operation which has

to be done at each iteration, and that may become prohibitive for large networks. Moreover,

it does not prevent the previously explained problem of dead units, as it has been observed in

simulations with non-convex distribution shapes (such as multimodal ones, for instance).

We will show how to overcome these problems in an optimized version of the neural-gas

that we propose in section 3.4.

417

3.4 Our own VQ algorithm

For this VQ layer, a kind of neural-gas (see section 3.3.4) algorithm has been implemented,

but with the following original improvements:

1. Not all of the units are sorted and adapted at each iteration, but only those for which

the adaptation function G(i) in (15) will be signi�cant.

2. Dead units are avoided by implementing a kind of neural fatigue [4] or conscience [6]

mechanism that leads units that are out of the input distribution to have a chance to be

elected and therefore attracted within the distribution.

3. The time-constrained learning scheme (through the time-dependent parameters schedules

(17)) is replaced by a continuous learning scheme, which self-stabilizes when the distri-

bution is stationary, but is able to become highly adaptative again when the distribution

is changed.

The result of these improvements is a very fast VQ algorithm, whose convergence depends

only on the distribution stationarity, and which maps homogeneously the input distribution.

3.4.1 Limitation of the number of adapted units

Considering (15), one can notice that units of rank k � � have negligible adaptation function

G(i)

�

=

0. It is therefore possible to restrict the distances sort for only the K (say, for example,

K = 3� + 1) �rst values. In the �rst coarse adaptation steps, for which � is large, it does not

save much time, but for the next �ne adaptation steps (that take in practice the largest part

of the process), it avoids a lot of useless computations.

The implemented sort is a tree-sort restricted to the K � N �rst distances. The restriction

conditionally applies for each insertion of a new distance �

k

in the tree made while the distances

of all units are computed. This kind of sort algorithms are well-known in oriented-graph theory

and computer science.

Once sorted, the K selected units are updated according to (18):

W

i

 W

i

+ �

i

G(i;x)(x�W

i

) 8i jk(i) < K (18)

3.4.2 Dead units avoiding

Following [4] or DeSieno [6], we give to never-elected neurons a chance to become eligible. Let

us consider the expectation value of the adaptation function of unit i, estimated through a

low-pass �lter:

p

i

 p

i

+

1

�

(G(i)� p

i

) (19)

where � is the time constant for the estimation.

If, for each unit i, the rank k(i) 2 f0; : : : ; N � 1g is equiprobable, then p

i

should converge

to a constant value

1

N

P

N�1

k=0

exp(�k=�). Units that are infrequently adapted will have low

p

i

, while too frequently winning units will have comparatively high values of p

i

. In order to

favourize fewly sollicited units, the sort operation should be made with respect to weighted

distances, thus (13) and (14) should be replaced by:

q

0

< q

1

< : : : < q

k

< q

k+1

< : : : < q

N�1

(20)

with:

q

k

= p

i

x�W

k(i)

 (21)

418

Election of units with low winning rate is therefore facilitated, and dead units are no longer

observed.

The low-pass time constant � was typically set to � = 20N in our simulations.

3.4.3 Continuous learning scheme

The parameters � and � computed through (17):

r = r

i

�

r

f

r

i

�

t=t

max

(22)

do follow a exponential decreasing predetermined schedule, with initial value r

i

at iteration

t = 0, and �nal value r

f

at iteration t = t

max

. Since this schedule depends only on the time,

there is no possibility, after t

max

iterations, to \come back" to high parameters values, in order

to make the network adaptable again when the input distribution changes.

The idea here is to keep the global form of (22), but replacing t=t

max

by any convenient

convergence measure evolving in the same range, that is, in [0; : : : ; 1]. Such a measure is

obtained by considering for example the whole set of p

i

as computed in (19). As previously

said, a good mapping with equiprobable Voronoi regions should lead the p

i

to have about the

same expectation value. The ratio,

P =

min(p

i

)

max(p

i

)

(23)

which remains low even if just one unit is not at its right place (for example, if one unit is

left out of the distribution), is used as such a measure. For widely spread p

i

, typical to bad

quantization, P takes a small value. On the other hand, if all p

i

are equals, then P = 1. Thus,

the parameters law becomes:

r = r

i

�

r

f

r

i

�

P=P

0

(24)

where P

0

is a value in the range [0; : : : ; 1], which is the value of P for which the parameter

takes its \�nal" value r

f

. In practice, it is almost impossible to obtain a value P = 1 according

to (23), since it always remains some
uctuations (though of small value) in the p

i

's.

A convenient value is for example P

0

= 0:7, which is the choice adopted in our simulations.

3.4.4 Parameters summary

The described optimized neural-gas algorithm is robust in regard to the \initial" and \�nal"

parameters values. Following is a set a parameters which have been found to give small con-

vergence times with many input distribution shapes. Moreover, the transition towards a new

distribution is surprisingly quick regarding to the good stability obtained once the distribution

becomes stationary again:

419

Parameter designation symbol low value high value typical

Initial neighb. radius �

i

N=3 N N=2

Final neighb. radius �

f

0:5 2 1

Initial gain �

i

0:5 1 0:8

Final gain �

f

0:001 0:05 0:01

Low-pass time constant � 5N 200N 20N

Selected units K 1:5� N 3� + 1

Expected asymptotic P value P

0

0:4 1 0:7

4 Projection layer

The projection layer is the second part of the VQP network, which aims to �nd the output

vector through interpolation. Each neuron has to �nd a relevant position in the output space,

trying to copy the topology of the input one.

4.1 \dy; dx" representation

The underlying idea to adapt this layer is inspired by an organization measure we had already

de�ned in [3] for Kohonen networks and we refer here to as \dy; dx" relation. It consists in the

representation of the joint distribution of all input weights distances versus the corresponding

distances in the ouput space (for Kohonen Maps, the grid indices distances dy along the lattice).

This plot, practicable for whatever input and output dimensions, results in a cloud of points

whose shape gives a lot of informations. For completely unorganized maps, as shown in �g. 3a

or 3c, there is no correlation between input and output distances. This results because output

distances (on horizontal axis) have not unique corresponding input distances (on vertical axis),

giving a spread cloud of points. In contrast, perfectly regular maps give a \dy; dx" relation

which is a straight line of slope a (where a is the weight distance between two consecutive

units), as in �g. 3b. Finally, for folded maps (but with local conservation of topology), the

relation begins approximatively with a line, but incurves for large grid distances, even coming

back to small values for closed (circular or toroidal) maps, as in �g. 3d.

(a) (b) (c) (d)

Figure 3: First row: usual weights representation. Second row: \dy; dx" representation. (a) Kohonen

map at initialization. (b) After 10000 iterations with rectangular uniform distribution. (c) Kohonen

monodimensional map with normalized weights at initialization. (d) The same, organized on a circular

distribution.

420

In practice, this plot does not take into account all the N

2

possible points, which would

become heavy for large number N of neurons: only some thousands of points are drawn by

selecting randomly couples of neurons.

The use of this relation in VQP, where neurons have a
oating position in the output space,

is straightforward: the horizontal values dy no longer refer to grid distances, but to the output

weight distances between units, while the values dx remain the input weight distances between

units.

4.2 Adaptation rules

The goal of VQP is to obtain a \dy; dx" relation which is a thin line, therefore the projection

is topologically correct, at least locally. In fact, this task is impossible if the wanted projection

need to be non-linear (which is the case when trying to reveal non-linear dependances in

the input space). Then, we relax this constraint to be e�ective not for the whole plot, but

only for a restricted range of distances in ouput space. This is done by using a weighting

factor H(dy) = (1 + (dy=dy

0

)

q

)

�1

that favourizes the adaptation for small output distances,

where dy

0

is an output distance cut o� and q a strength parameter. Fig. 4 shows H(dy)

for a given dy

0

and some exponents q. In the following, \dy; dx" relations will also show in

superimposition this weighting factor, whose parameters have been set \by hand" looking at

the \dy; dx" distribution for each case.

Figure 4: H(dy) for some values of q.

In the previous version of VQP, only two units, the ouput weights of the winner at current

iteration (w(t)) and of the previous one (w(t� 1)), were moved closer or farther according to

the ratio (25):

� =

dy � dx

dx + dy

H(dy) (25)

and

H(dy) =

1

1 + (dy=dy

0

)

q

(26)

where dx is the input weight distance between the winning neurons w(t) and w(t � 1), while

dy is the corresponding output weight distance.

When the distance between output weights of neurons w(t � 1) and w(t) is greater than

the correponding distance in the input weights space, � is positive and thus the two neurons

output weights are brought closer. On the other hand, when they are too close in the ouput

weights space, they are pulled far away.

It has been found out that this scheme was not very e�cient for large number of units,

for the following reasons: only two units were adapted at each iteration, and moreover, as the

421

winner index at time t is assumed to be independent from those at time t� 1, they have very

low chance to be neighbour in the output space, and therefore the weighting parameter H(dy)

in (25) was small in mean. In other words, we had low chance to pick an interesting couple of

neurons.

We generalize here the projection layer rule in a way that implies all units at each iterations:

W

out;i

 W

out;i

+ �

out

�

i;w

(W

out;w

�W

out;i

) 8i (27)

where �

out

is an output adaptation factor set to 0:4 � 0:1 in all our simulations.

�

i;w

=

dy

i;w

� dx

i;w

dx

i;w

+ dy

i;w

H(dy

i;w

) (28)

where dx

i;w

is the input weight distance between neurons i and the winner w, while dy

i;w

is the

corresponding output distance. In practice, an in�nitesimal value is added to the denominator

dx

i;w

+ dy

i;w

in order to �x

lim

dx

i;w

;dy

i;w

!0

�

i;w

= 0

as for example with i = w.

When the neuron i is too distant from the winner neuron w in the output weight space,

regarding to the input one, �

i;w

is positive and thus i is brought closer to w through (27). On

the other hand, when the neuron i is too close to w, it is pulled far away.

The application of this rule for each neuron at each iteration leads the ouput layer to copy

as much as possible the topology of the input one in a much more e�cient way than in the

previous presentation of VQP algorithm [5]. The speed up is estimated to be of order O(N

p

),

where N is the number of neurons and p is guessed to be � 3 in practice.

(a) (b) (c)

Figure 5: Projection of a circular distribution onto one dimension (see text).

(a) (b) (c)

Figure 6: Separation of two interleaved rings in three dimensions, onto an output projection of 2

dimensions.

Some examples are given here (�gs 5, 6 and 7), with for each one: a) the input weights

location, b) the corresponding output weights, and c) the \dy; dx" representation. In �g. 2, the

422

input distribution was the text \Hello world" written onto a 3D helicoid, while the output

space was �xed to be in two dimensions. In �g. 5, the input was the 2D circle of radius 1, while

the ouput was �xed to one dimension. Here, the network has cut the circle at an arbitrary

place (between two neurons), while the rest of the topology has been conserved, giving the

typical \dy; dx" plot of �g. 5 that reminds the one of �g. 3c. Finally, an example with two

interleaved rings is given in �gs. 6 and 7. In �g. 6, where the input distribution was in three

dimensions, each ring in the projection has been broken at the center of the other ring, giving

a local respect of topology everywhere, excepted for these two broken points. In �g. 7, we

have added supervision by giving a di�erent class label for each ring in a fourth dimension.

Therefore, VQP learned to separate the two classes, giving two clusters that correctly represent

the rings, and a \dy; dx" representation that indicates the multimodality of the distribution

(the two clouds in �g. 7c).

(a) (b) (c)

Figure 7: Separation of two interleaved rings in four dimensions (the fourth being a class label), onto

an output projection of 2 dimensions (see text).

5 Conclusion

The new self-organizing neural network described here, the Vector Quantization and Projection

neural network (VQP), is inspired from the well-known Kohonen Maps. However, unlike them,

no a priori de�ned structure, such as in a lattice or grid of neurons, is �xed here: the neurons

�nd themselves their position in a continuous output space, trying to copy as much as possible

the topology of the input one. It is therefore a method able to represent high dimensional

data structures onto lower dimensional spaces, which does not su�er from the drawbacks

and limitations usually belonging to the classical techniques (such as Principal Components

Analysis), like the restriction to linear projection or prohibitive time wasting.

The �rst presentation of VQP [5] was only focused on the new concept, and involved simple

winner-take-all scheme for both Vector Quantization and Projection layers. A review of several

known VQ algorithms and a discussion on the Projection learning part are given in this paper.

The optimized version of the algorithm presented here involves the use of an optimized version

of the Martinetz and Schulten \neural-gas" algorithm, where the problem of \dead units" is

eliminated and which has been transformed to a continuously learning algorithm with very

fast learning abilities.

Aknowledgements. This work is partially granted by ELENA ESPRIT Project and by

a French ANVAR funding.

References

[1] F. Blayo and P. Demartines. Data analysis: How to compare Kohonen neural networks to other

techniques ? In A. Prieto, editor, International Workshop on Arti�cial Neural Networks, volume

540 of Lecture Notes in Computer Science, pages 469{476. Springer-Verlag, 1991.

423

[2] H. Caussinus. Un mod�ele pour fonder la recherche de projections r�ev�elatrices. In XXIVes

Journ�ees de Statistiques, pages 120{123, 1992.

[3] P. Demartines. Organization measures and representations of Kohonen maps. In J. H�erault,

editor, First IFIP Working Group 10.6 Workshop, 1992.

[4] P. Demartines and F. Blayo. Kohonen self-organizing maps: Is the normalization necessary ?

Complex Systems, 6(2):105{123, 1992.

[5] P. Demartines and J. H�erault. Vector quantization and projection neural network. In A. Prieto

J. Mira, J. Cabestany, editor, International Workshop on Arti�cial Neural Networks, volume 686

of Lecture Notes in Computer Science, pages 328{333. Springer-Verlag, 1993.

[6] D. DeSieno. Adding a conscience to competitive learning. IEEE International Conference on

Neural Networks, !:117{124, 1988.

[7] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural computation, volume 1

of Santa Fe Institute Lecture Notes. Addison-Wesley Publishing Company, 1991.

[8] T. Kohonen. Self-organization of topologically correct feature maps. Biological Cybernetics,

43:59{69, 1982.

[9] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin, 3rd edition,

1989.

[10] T. Kohonen. The self-organizing maps. Proc. of the IEEE, 78(9):1464{1480, 1990.

[11] Y. Linde, A. Buzzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE Trans.

Commun., COM-28:84{95, 1980.

[12] T. Martinetz and K. Schulten. A neural gas network learns topologies. In T. Kohonen et al.,

editor, IEEE International Conference on Arti�cial Neural Networks, Espoo, Finland, volume 1,

pages 397{407. Elsevier, 1991.

[13] E. Oja. A simpli�ed neuron model as a principal component analyzer. Journal of Mathematical

Biology, 15:267{273, 1982.

[14] H. Ritter, T. Martinetz, and K. Schulten. Neural computation and self-organizing maps: an

introduction. Addison-Wesley Publishing Company, 1992.

[15] H. Ritter and K. Schulten. On the stationary state of Kohonen self-organizing sensory mapping.

Biological Cybernetics, 54:99{106, 1986.

[16] N. Samardzija and R. L. Waterland. A neural network for computing eigenvectors and eigenval-

ues. Biological Cybernetics, 65:211{214, 1991.

[17] T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural network.

Neural Networks, 2:459{473, 1989.

[18] J. A. Walter and K. J. Schulten. Implementation of self-organizing neural networks for visuo-

motor control of an industrial robot. IEEE Transaction on Neural Networks, 4(1):86{95, 1993.

[19] E. Yair, K. Zeger, and A. Gersho. Competitive learning and soft competition for vector quantizer

design. IEEE Transactions on Signal Processing, 40(2):294{309, 1992.

[20] K. Zeger, J. Vaisey, and A. Gersho. Globally optimal vector quantizer design by stochastic

relaxation. IEEE Transactions on Signal Processing, 40(2):310{322, 1992.

424

