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Vector Quantization and Projection neural network
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Classical data analysis techniques are generally linear. They fail to reduce the dimension of data sets where dependence
between observed variables is non-linear. However, for numerous scientific, industrial and economic areas, it should
be desirable to obtain a low-dimensional parametric representation of the data set. Model fitting is a way to obtain a
usable representation of an observed phenomenon, but it requires expert knowledge about the phenomenon.
Moreover, hidden relations between observables could be not revealed. Kohonen maps are shown to be an alternative
techniques, able to map even strongly non-linear data sets [1]. Unfortunately, they have an a priori fixed shape and
neighbourhood structure, thus their use requires some informations about the shape and the dimension of the
underlying parameters space. We propose here a new self-organizing neural network, composed of two connections
layers. The first one quantizes an input data set, and the second one progressively constructs the projected shape and
neighbourhood on an output space of any chosen dimension. We illustrate the algorithm for various applications.
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1. Introduction

A problem frequently encountered in many contexts is how to determine a smallest set of independent variables able to

describe a redundant multidimensional data set. The space of these underlying parameters is called the variety of the data set.

In margin of many improved techniques (linear regression, canonical analysis, discriminant analysis, model fitting), neural

networks have proven certain capabilities in data analysis. Oja proved that a simplified neuron model may act as a principal

component analyzer [10]. Cherkassky & Lari-Najafi show how to do non-parametric regression analysis with self-organized

neural network [2]. Sanger [12], and Samardzija & Waterland [11] describe neural networks that compute eigenvectors and

eigenvalues of data (that is, how to implement a Principal Component Analysis, PCA, in a neuronal way).

The problem of all PCA-like methods (and of the original PCA itself) is that they are only driven by linear dependence

between the observed variables. This is a severe limitation since in a number of technical and scientific applications, this

dependence is strongly non-linear. In such cases, these methods fail to reduce the number of variables without loosing

information. In fact, when statisticians encounter this problem, they generally try to build a model of the observed

phenomenon, then they search the proper model parameters with least mean square techniques (fitting). The model is

generally not easy (even impossible) to build when the data dimension (the number of observed variables) is high.

Kohonen's Self-Organizing Maps (SOM) [7] have looked very promising, because of their capability to map the input data

set shape. This property is illustrated in figure 1 (from [1]).

box distrib map Fig. 1. Placement of the Kohonen grid on a
"horseshoe" shape input distribution in a 3D space.
This is a good example of non-linear distribution where
PCA method fails to reduce the dimension.

Although the SOM seems to overcome the problem of non linear redundancy, it presents a major drawback being the fact that

the projection geometry structure is fixed a priori. This implies one knows the variety of the data set, in order to choose the

correct grid dimension. Moreover, non square shapes are not very well mapped with square maps, as shown in figure 2. For

example, the mapping shown on figure 1 was feasible thanks to the fact we knew that the variety dimension was 2, and that

the unfolded distribution was about 3 times larger than high, so we took a 2D grid network of 10x30 neurons. On the

contrary, in figure 2, where we took a "naive" 15x15 network. Another fact is that the projection made by the original SOM

is discrete, as long as only the winner element is considered for one data input (a continuous projection is therefore not

available in the output space). In order to overcome all these problems (shape of the input distribution, non-linear projection

and continuous projection), we propose a self-organized network where neurons "compute" their position in the projection

space in an adaptive manner, and where their activity drives an interpolation algorithm.

2. The VQP network

Considering the function of a Kohonen map, one should focus on two main features:

1) The Vector Quantization property, for which the particular structure of the SOM algorithm is interesting because it

reduces the number of dead units, that is, the number of units out of the input distribution [6].
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2) The topologically correct projection, where neighbour neurons have neighbour synaptic weights, that is, small distances

in the output space (the space of the neuron grid) reflect small distances in the input space.

distrib map distrib map

distrib map distrib map

Fig. 2. Some particular dis-
tributions and their mapping
with a "naive" Kohonen
map, that is, where the map
is square. This is a choice
generally made when no
assumption is possible
about the distribution shape
(for example, when the data
set is high-dimensional).

The new self-organized neural network proposed here, Vector Quantization and Projection network, presents these two main

features, but does not impose any particular a priori defined shape, as a rectangular or hexagonal map. This network is

composed of two connection layers as shown in figure 3:

X 
(input space)

Y 
(output space)

x x y1 n y1 p......

outWinW Fig. 3. Structure of the
VQP network. The first
layer realizes a vector
quantization of the input
distribution. The second
layer reproduces the con-
figuration of the first one
in a self-organized way.

The aim of the network is to project the n-dimensional input vector x [x1, ..., xn]T, to a p-dimensional space, the result being

the output vector y [y1, ..., yp]T, preserving as much as possible the topological information. The definition of output vector

y is not supervised; the only constraint attached to it is to try to mimic, at least locally, the topology of the input space. The

dimension p is the only information fixed (by the user) for y. The first layer realizes a vector quantization of the input space,

while the second one performs a projection towards the output space. As well as in Kohonen maps, where neurons may be

considered to point in the input space with their own weight vector, here, each neuron i points to Win,i in the input space,

and also to a corresponding position Wout,i in the output space. When an input vector x is presented, each neuron i computes

an activity ai reflecting the proximity of Win,i to the vector x through a radial basis function (RBF). Such a function is for

example the Gaussian function of the euclidean distance:

ai = exp − 1

λ i
2

x − Win,i

2





(1)
where ||x-Win,i|| is the euclidean distance between the input vector x and the

input weight Win,i of neuron i, while λi is the influence radius of the neuron

i.

Then, the projection is computed as the sum of all output vectors, weighted by the neuron activities (this is an interpolation

within the output vectors with Gaussian kernels):

y =
aiWout,ii=1

N
∑

aii=1

N
∑

(2)
where N is the number of neurons. The adapted values through self-learning

are the input matrix Win, the influence radius λi of each neuron i , and the

output matrix Wout.

An example of a projection (after adaptation) is given in figure 4:

in 2D

2

1

out
2D

1

2 in 2D

2

1

out
2D

1

2 Fig. 4. The network
is able to project input
vectors into output
space. This is shown
here after organization
on a 2D square distribu-
tion for one vector
(left side), and for the
whole distr ibution
(right side).



330

The network was trained with a square uniform data set in 2 dimensions, the output space being also in 2 dimensions. In the

left part, we show a particular vector presented on input (the cross in the "in 2D" display) and its projection (the

corresponding cross in the "out 2D" display). In the right part, the whole distribution is projected. An interesting feature is

that, for any application, the projection can also be used backward, that is, presenting a vector in the output space and

computing the corresponding input position. This is simply done by exchanging Win, Wout, x and y in (1) and (2).

3 . Adaptation rules

3 . 1 . First layer

We do not want to focus here on the quantization algorithm. Several algorithms have proven their efficiency from different

points of view [6, 9, 14]. Let us just say that we have considered a basic Competitive Learning algorithm [9], where neuron

activities are Gaussian kernels. Let us also say some words about the radii adaptation of these kernels. Firstly, the main

challenge here is to achieve a correct and smooth projection, even between centroids. This implies kernels with appropriate

radii. Secondly, we want that units, initially out of the input distribution (well known as dead units in VQ theory) are, after a

while, attracted by the distribution. This implies temporarily growing radii. We will first solve these two problems

independently, then combine their solutions into a unique learning law.

After a winner has been chosen according to eq. (3) explained later, a first idea consists in decreasing the sensitivity of units

that win too often, giving the other ones a chance to be elected.

w | ′λ iai ≤ ′λwaw∀i (3)

′λ i ←
′λ i +

∆λ
N
− ∆λ i=w

′λ i +
∆λ
N

i≠w






(4)

Win,w←Win,w +α x −Win,w( ) (5)

This is done through eq. (4), at each iteration, by reducing the influence

radius of winning unit by a small value ∆λ, while all others are increased

by ∆λ/N (thus the mean of all radii is left constant). Dead units (never

winning) have thus growing radii until they finally win the competitive

election process, being then attracted by the distribution (eq. 5). In order to

speed up this phenomenon, we consider the expression λiai, and not only ai,

to determine the winner w (eq. 3). Without this, dead units would have to

increase their influence radius up to a huge value to get a chance to win.

This idea is similar to what is sometimes called "conscience" [5] or "neuronal tiredness" [4]. A secondary interesting effect is

that regions of the input space with high density of samples are mapped with a number of neurons with small radii, while

regions with low density are mapped with few neurons with big radii.

The other problem, concerning the good interpolation between centroids, is solved as following: consider an input vector

being presented to the network, and falling between the input pointing position of some (say, 3 or 4) neurons. Let us remark

that almost only these neurons are responsible for the y position resulting of eq. (2), because other neurons are too far, thus

their activity is negligible. Then, a good empirical constraint to obtain smooth interpolation is to impose the sum of these

maximal activities to be roughly 1 in average. This has been found a good approximation of the optimal value (that is, the

one which gives the minimal distortion) in one dimension.

′′λ i ← ′′λ i 1+ aiε 1− aii=1

N
∑( )[ ] (4 bis)

Since other neurons activity is near to 0, we may in fact consider the sum

of all activities and drive its average value to be approximately 1.

When the sum is too high, the influence regions of neurons pointing near the presented input are supposed to overlap too

much. Then, the radii of these units are reduced in function of their contribution in the sum. On the contrary, when the sum

is too low, the radii are increased. The weighting by ai in (4 bis) avoids not concerned kernels to have their radius changed.

We may now consider ′λ i  and ′′λ i  as a unique value λi to simplify the algorithm, as long as the two described effect (dead

units suppression and good interpolation) are not antagonistic. To summarize, the first layer adaptation is described by two

equations (one for the centroids position, and the other one for their radius), whose dynamics is controlled by three

parameters, ∆λ, ε, and α. In our simulations, we have taken α␣=␣10-1, ∆λ␣=␣10-3, and ε␣=␣10-3.

3 . 2 . Second layer

The second layer aims at reflecting the topology of the first one. When 2 units are neighbours in the input space, they should

be also neighbours in the output space. On the contrary, if two units are far in the input space, they should be far in the

output space.

Shepard and Carroll [13] describe an optimization algorithm which realizes such a projection of N points in n dimensions

onto p dimensions. The method is based on the definition of an inverse continuity index κ, and its minimization through a

gradient descent algorithm.

κ =
dxij

2

dyij
4

j≠i

∑
i

∑
1

dyij
2

j≠i

∑
i

∑












2

(6)

where dxij is the distance between points i and j in the input space, and dyij

their corresponding distance in the output space. Smoother functional

relations are indicated by smaller values of κ [13].
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From a computational point of view, the minimisation of κ is very heavy. The main problem of this method, for a neuronal

implementation, is the globality of κ, whose computing involves all inter-neurons distances. This becomes a real problem

when the number of representative points is large (i.e. N > 100). For this reason, we decided to provide a simpler and more

local algorithm: the ideal expected state where distances are conserved is reached simply by maximizing the weight distances

correlation between the input and the output spaces. That is, considering the winner at time t (w(t)), and the winner at time t-

1 (w(t-1)), we compute in (7) their distance in the input space (dx), respectively in output space (dy). Then, the output

weights of both neurons w(t) and w(t-1) are adapted to obtain a better matching between the distances dx and dy (8 and 9).

∆x = Win,w(t) −Win,w(t−1) , dx = ∆x

∆y = Wout,w(t) −Wout,w(t−1) , dy = ∆y
` (7)

β =
dx − dy

dx + dy
(8)

Wout,w(t) ← Wout,w(t) + β
2 ∆y

Wout,w(t−1) ← Wout,w(t−1) − β
2 ∆y

(9)

In (8), β represents a distance adaptation factor. That is, the output distance

should be multiplied by β to become more correct: if dx < dy, then β < 1,

and if dx > dy, then β > 1. In (9), Wout,w(t) and Wout,w(t-1) are moved away or

brought closer together in function of β. These both cases are illustrated on

figure 5. This very simple law unfolds the projected space and drives our

projector network toward a state where distances are approximately

preserved. Let us remark that, due to the form of (9), the center of gravity of

output weights remains obviously constant. On the other hand, the

orientation is undefined.

Input space Output space. β > 1 (dy < dx) Output space. β < 1 (dy > dx)

in,w(t)W

in,w(t-1)W

dx

dy

out,w(t)W

out,w(t-1)Wdy

out,w(t)W

out,w(t-1)W

Fig. 5. Adaptation of
output weights for winner
and last winner in both

cases β > 1 and β < 1.

In practice, when the dependence in input space is strongly not linear, it is not possible to obtain a correct projection for both

short and large distances. In order to unfold the data cloud, it is desirable to give more importance for short distances than for

large ones. Then, the projection will be at least locally correct. This is obtained by the adjunction in (8) of a weighting factor

monotonically decreasing with the output distance:

β =
dx − dy

dx + dy

1

1+ dy
dy0

( )p















(10)

The exponent p controls how quickly the weighting factor has to decrease;

in our simulations, p was fixed to 5, in order to ensure a good separation

between short and long distances in output space. The value dy0 is a

parameter that give an order of value for dy.

In the complete algorithm, the two layers are adapted independently but at the same time. That means the two described

phases (quantization, then projection) are in fact realized simultaneously in one. It has been observed that once the network

has found a correct projection for a given distribution, it converges more easily to another one than from a random state.

The algorithm is illustrated by various examples in section 4. Because it is impossible, in high dimensions, to visually

assess the quality of the topological correspondence between Win and Wout,, we compute a graphical representation between

the input and output space interpoint distances introduced in [13], and defined for Kohonen maps under the name of "δi, δw

relation" in [3]. In this last representation, some couples of units are randomly taken. These couples are represented on a 2D

plot by points whose x-coordinates are the output space distances, and the y-coordinates the input space distances. A strictly

linear relation between the two distances (i.e. all point are on a line starting from <0,0>) reflects a perfect projection. As

shown in [3] for Kohonen maps, folded maps give δi, δw relation where the input distance no longer grows after a certain

output distance. In this paper, the distances are called dx resp. dy, instead of δw and δi, thus the relation is called here "dy-dx

relation" (dy, output distances, are on the horizontal axis).

4 . Examples

4 . 1 . 2D →  2D examples

in 2D out 2D

dx

dy

Fig. 6. Here, we show resulting states (after
approximately 5000 iterations), given a uniform
distribution in two boxes. The dy-dx diagram shows
the good matching between output and input
distances. As in all following figures, we show on
the same graphic the value of dy0 (the vertical line),

and the weighting factor of eq. (10).
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in 2D out 2D

dx

dy

Fig. 7. Same representation as for fig. 6, but with a
different input distribution (uniform distribution
through a triangular mask).

4 . 2 . 3D →  2D example

in 3D out 2D

dx

dy

Fig. 8. This is the result obtained on the
"horseshoe" shape of figure 1. The network
automatically unfolds the distribution, revealing its
rectangular shape. The dy-dx representation show
that the projection is strongly non-linear (d y
distances after the vertical line are not correlated
with corresponding dx distances, therefore the dots
are not on the line dy=dx).

4 . 3 . Taxonomy (Hierarchical Clustering) of abstract data.

We take here the example given by Kohonen in [8], where abstract data vectors consisting of hypothetical attributes are

analyzed to reveal their implicit relations. As shown in figure 11, the VQP algorithm tends to reveal the relations between

data and is more easily interpretable than the Self-Organizing Map.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1 2 3 4 5 6

1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6

x
x
x
x
x

1

2

3

4

5

Table 1. (Redrawn from Kohonen [8]). Input data matrix consisting of 32 vectors, each one collecting 5 hypothetical attributes.
They are labelled from "A" to "6" for later  identification.
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A B C D E Fig. 9. (Redrawn
from Kohonen [8]).
Minimal spanning
tree (where the most
closely similar pairs
of items are linked
by hand) correspond-
ing to Table 1.
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Fig. 10. (Redrawn from
Kohonen [8]). Self-orga-
nized map of the data ma-
trix of Table 1.
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out 2D

dx

dy

Fig. 11. The projection obtained by the VQP algorithm of the data matrix of
Table 1. The output space has been choosed bidimensional. The dy-dx repre-
sentation show that the projection is strongly non-linear (dy distances after
the vertical line are not correlated with corresponding dx distances, therefore
the dots are not on the line dy=dx). The VQP algorithm reduces directly the
hierarchical clustering in a much more explicit way than the SOM (fig. 10).

4 . 4 15D →  2D example

We have also used the VQP algorithm to project a particular 15-dimensional distribution onto a plane. The distribution is

generated by simulating a system whose purpose is to measure the position of an ultrasonic source on a plane. Several (here

n = 15) sensors are randomly disposed on the plane and give the distance to the source. We collect all the n distances in a

vector, constituting the input distribution. Such a system could learn in a non-supervised way the n to 2 coordinates

transform, with no need to know the position of the n sensors. Although the vectors dimension is arbitrarily high (n), the

degree of freedom of the system is naturally only 2 (because the source is moving on a plane). The VQP output result (not

shown here) in two dimensions is the shape of the source position domain (on the plane), for example a square. Of course,

such a system could also be implemented in 3 dimensions.

4 . 4 4D →  2D example

In this example, we show how to separate two classes, consisting here of overlapping toric distributions. These distributions

are in 3 dimensions, but we append a class label (0 or 1) magnified by 10 times radius of the torus, in order to achieve the

correct separation, giving in fact a 4D input distribution.
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out 2D

dx

dy

box distrib Fig. 11. The two classes are
well separated by the algorithm.
The dy-dx relation is composed
of two clouds: one at left of the
vertical line (dy < dy0) perfectly

linear, corresponding to couples
of points of the same class. The
other cloud (on the right part of
the graphic) is due to couples of
points of different classes. For
these couples, the projection is
strongly non-linear.

5 . Conclusion

We have described a new algorithm for data analysis, consisting of a vector quantization of a given distribution (that can be

arbitrarily high-dimensional), and its topologically correct projection onto another space of lower dimension. It has be shown

some possible applications of this algorithm. We believe that much more applications could be envisaged in various areas:

- Monitoring and control of industrial processes

- Robotics

- Signal (especially speech) processing

- Function approximation

For several applications (especially in robotics), it is interesting to be able to obtain the reverse projection of the data

analyzed (that is, to project from the output space to the input one). This can be simply obtained by inverting the respective

roles of input and output layer, once the network has been organized.

Further work has to be done to ameliorate the quantization process and to increase the projection fidelity of data itself (not

only the centroids). Another hard point is the time wasting for very high dimensional and numerous data vectors (like

millions of points in several hundreds dimensions). Evolutive implementation should be envisaged to overcome this

problem.
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