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Abstract. The Kohonen's algorithm is known and used to map automatically an input space

with a grid of neurons. When this space is high-dimensional, it becomes di�cult to analyse

the state of the network, because it is no longer possible to represent the network in the weight

space. In this paper, we enumerate some existing techniques used to analyse the network state

and we show their limitations. We also present a new method that provides useful information

about the organization degree even in high-dimensional spaces.
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1 Introduction

In 1982, T. Kohonen has proposed an original neuronal algorithm which realizes the quantization

of an input space that can be continuous or discrete and of arbitrary dimension [4]. Inspired

by biological observations on the self-organization (especially on the retinotopic maps formation

mechanisms), this algorithm does not intend to modelize all the phenomenons that provide this

self-organization, but rather try to emphasize the main caracteristics of this function: it realizes

the non-supervised learning of the projection from a stimuli space toward a \cortical" map of

neurons, conserving the neighbourhood relations and depending on the statistics of the stimuli.

Since this learning should be seen as the placement of the neuron weights vectors in the input

space in respect of its topology, we also call this algorithm \features extraction".

The potential and existing applications of this algorithm are numberous and concern several

areas, as robotic, image processing, process control and in general data analysis. However,

despite of the wide usage of this algorithm, there is only few methods to analyse the network

con�guration while and after learning. Since the algorithm is very sensible to the di�erent

learning parameters, to the initial con�guration, to the nature of the stimuli and to their mode

of presentation, this lack of analyze methods is very annoying.

In the following sections, we show some methods to analyse the network convergence and

we propose a new one that emphasizes the degree of organization.

2 The model

We consider here the simpli�ed algorithm [4]:

Let an input vector x have n components [x

1

; : : : ; x

n

]

T

, as well as the weight vectors of all

the neurons i (1 � i � N), i.e. W

i

[W

i1

; : : : ;W

in

]

T

. Using a distance measure �(x;W

i

) between

x andW

i

(for example the euclidean distance), the index k of the neuron with the best response

to an input vector x is given by the condition:

�(x;W

k

) = min �(x;W

k

) ; 1 � i � N (1)

Then, around this winning neuron k, we de�ne a subset V

k

(t) of neurons within a neigh-

bourhood. The weights of this neuron subset are adapted as following:
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W

i

(t+ 1) =W

i

(t) + �(t) [x(t)�W

i

(t)] ; i 2 V

k

(t) (2)

The weights of the other neurons remain unchanged.

Let us remark that the neibourhood radius is a decreasing function of the discrete time t,

as well as the gain parameter �.

The repetition of these steps (we do them for each presented stimulus x) conducts the weights

W

i

to converge to a discretized image of the stimuli density distribution. This convergence is

demonstrated in the case of a monodimensional network, with a uniform [2] or non-uniform [1]

input distribution.

To formalise the meaning of the term \organized" when the input and weight space dimension

is arbitrarily high, we say that a Kohonen map is well organized when both of the following

conditions are satis�ed:

1. There is a correct quantization of the input space (every neuron has about the same

probability to be excited). This implies a concentration of neurons in the regions of the

input space where the stimuli are frequent.

2. There is a topological conservation of the input space (neighbourhood relations are con-

served by the projection in the Kohonen map). This implies ordered neurons.

3 Usual representations and measures

3.1 Network representation

The most known representation of the Kohonen network is the weight positionning of the neurons

on a plane (we use the weights vectors as the coordinates of the grid intersections). This

representation shows immediately and intuitively the organization quality as previously de�ned

(section 2).

Unfortunately, when the input space dimension is greater than 2, it is necessary to make

a projection on two dimensions to represent the grid. The lack of information is generally

unacceptable when selecting only 2 components in the weight vectors.

In the section 4, we describe a representation that overcomes this major di�culty.

3.2 Measures

In [6], a new (and faster) variant of the algorithm is presented. The simulations are analysed

through the evaluation of the variance of �ring rate of the neurons. When the neurons quantize

well the input space (condition (1) of the section 2), this variance tends to 0, because each

neuron has the same probability to be excited. On the contrary, a great variance in the neurons

excitation is the indication of a bad quantization. So, this measure gives a suitable information

about the quantization, but does not take in consideration the good topology conservation (the

order of the units). A simple example can illustrate this fact: If the neighbourhood is �xed to 0

from the beginning, the algorithm degenerates to a simple quantization algorithm, without any

topological conservation (because without any order in the units). Indeed, the place of weights

vectors in the input space is not inuenced by the place of the neurons in the grid, because the
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neighbourhood in the grid has never been used during the learning. However, the excitation

variance measure will not signal this lack of organization in the sense of our de�nition.

Another study [7] concerns the analysis of the equilibrium state reached by the network after

convergence. An equation describing the stationnary state of the network is given, from where

the expression of the local magni�cation factor is derived. This magni�cation factor is computed

in the case of a monodimensional input and weights space, but the authors indicate that such a

development cannot be driven within two dimensions.

Another measure, which does not take into account the input distribution, consists in the

number of inversions in a mono-dimensional network (the grid and the input and weight space

are in one dimension). Proposed in [5], this measure is used in [2] to demonstrate the convergence

of the network in a state where the units are ordered. By its de�nition itself, this measure is

unapplicable for many dimensions.

4 \Curvilinear" representation

In [3], we introduce a \curvilinear" representation which looks like the weight positioning rep-

resentation, but may be used with an arbitrary number of dimensions. The idea consists in the

\unfolding" of the surface described by the grid of neurons in the weights space. The neurons

are positionned on a plane using their curvilinear coordinates in the surface, i.e. in function of

their respective distances in the weights space. In practice, we position �rst the neurons of the

central axes of the grid (w: width of the grid, h: height, neuron ij position: P

ij

) :

P

h=2;j

x

= P

i;w=2

y

= 0 (3)

Then, the position of the other neurons is computed recursively from these axes to the grid

borders (for example here for the upper right quarter of the grid, the expression for the other

quarters should be found by symetry):

P

ij

x

= P

i;j�1

x

+ kW

ij

�W

i;j�1

k (4)

P

ij

y

= P

i�1;j

y

+ kW

ij

�W

i�1;j

k (5)

Figure 1 illustrates this representation. We show the learning phase of a 30 � 10 network

in a 3D space with a \horseshoe" shape input distribution. The upper images show the usual

weight positioning representation, while the lower ones show the equivalent in the curvilinear

representation.

5 Organization measure

5.1 The \�" measure

In [3], we de�ne also a scalar organization measure that represents the disorder degree of the

grid. This measure � is at a given time the ratio between the standard deviation of the distances

between consecutive neurons weights vectors and the mean of these distances:

� =

�

�

�

�

(6)
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Figure 1: The usual weight positioning representation (up) and the curviliear representation (down)

for a learning sequence with a \horseshoe" shape input distribution in a 3D space.

With �

�

the mean of the euclidean distances between the weight vectors of two neighbour

neurons, and �

�

the standard deviation of these distances. If the grid is absolutely regular, �

tends to zero. On the contrary, more the grid is disordered, more � gets great.

This measure is scalar and so it should be plotted in function of time. We observe in a �rst

time a growth of the curve corresponding to the network ordering. In a second time, the �

function decreases while the network grid regularizes [3].

5.2 \�

i

; �

w

" relation

We want to generalize this idea considering not only the distances between two consecutive

neurons, but between all the neurons of the Kohonen map. We focus on the relation between

the physical (or grid index) distance �

i

between two neurons and their weights distance �

w

. Since

the network is discrete, the physical distance �

i

in the grid is stepwise, and it can only take the

values

n

1;

p

2; 2;

p

5; : : :

o

, while the weights distance is a continuous value. In the right part of

the �gures 2 and following, we show the distribution of the couples (�

i

; �

w

) for several cases; in

the central part of the �gures, we show the mean of �

w

for each �

i

, as well as the mean plus (or

minus) the standard deviation; the left part contains the usual weight positioning representation.

In the �gure 2, we show this representation in two cases. Up: just after the weights initalisation

to random values. Down: after 10000 iterations with a 2D uniform distribution in [0; 1]

2

. With

the random weights, the mean of �

w

for each �

i

is horizontal (central part of the �gure). It

means that no particular organization is present. On the contrary, when the grid is regular, this

mean follow a growthing line, indicating that the distance between the weights of two units is

proportional to the physical distance of these units in the Kohonen grid. This gives information

about the condition (2) ment by \good organization" (section 2).

The interest of this representation is that it provides an information about the units order,

and this whatever high the input and weight space dimension is.

We illustrate this representation in the �gures 4a to 4n, where simple distributions are

mapped with more or less success. These �gures are commented in the section 7.
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Figure 2: The \�

i

; �

w

" relation shown in two cases: Up: with random weights. Down: after 10000

iterations with a square distribution: the network is ordered.

6 15 dimensions example

In view to validate this representation, we consider the organization of a bi-dimensional network

whose input and weights space is in n dimensions (n > 2). We compare the network self-

organization in function of two distinct stimuli distributions. To generate the �rst distribution,

we simulate a system whose the purpose is to measure the position of an ultrasonic source on

a plane. Several (n) sensors are randomly disposed on the plane and give the distance to the

source. We collect all the n distances in a vector, constituting the �rst input distribution. Such

a system could learn in a non-supervised way the n to 2 coordinates transform, with no need to

know the position of the n sensors. Although the vectors dimension is arbitrarly high (n), the

freedom degree of the system is naturally only 2 (because the source is on a plane).

On the contrary, the second distribution is uniform in [0; 1]

n

. Since the n components are

independant, the freedom degree of this distribution is n.

The results obtained with the �rst or the second input distribution with a network of 20�20

neurons and n = 15 dimensions are shown below in �gure 3. In the left part of the �gure, the

curvilinear representation (cf. section 4) is approximatively similar for both cases, which gives

false impression that the organization is comparable. Also, the excitation variance measure

as described in the section 3 (but not shown here), does not signal any organization quality

di�erence between both cases. However, it is obvious that, in the case of the uniform distribution,

the neurons grid will describe many folds in the weight space, and that the topology conservation

will be only local. On the contrary, the topology conservation is larger when the distribution

stems from the sensors system.

The \�

i

; �

w

" relation emphasizes this fact, as it is shown in the middle and the right parts of

�gure 3. Organization length, that we de�ne as the mean number of units disposed approxima-

tively linearly, does not excess 5 in the case of uniform distribution (for �

i

> 5, the mean of �

w

is horizontal). On the other hand, the sensors distribution give a network were the topological

conservation remains on the whole network.
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Figure 3: Representation of the \�

i

; �

w

" relation (right and middle part) and the curvilinear represen-

tation (left part) for a 20� 20 network after self-organisation. The input distribution has 15 dimensions.

Up: the distribution stems from the sensors system (see text). Down: the distribution is uniform for

each dimension.

7 Discussion

In �gures 4a to 4n, we illustrate the \�

i

; �

w

" relation for several well identi�ed 2D or 3D distri-

bution cases.

In �gures 4b, 4c and 4d, we should observe that the general shape of the distribution does

not a�ect too much the mean of �

w

(�

i

), which remains approximatively a straight line, even if

the standard deviation is greater than those obtained in the case of the prefectly regular grid.

In �gure 4e, the input distribution was non-uniform (coordinates rnd

2

(0; 1) and random

sign). The mean of �

w

(�

i

) remains growing, but is less straight than in the case of the perfect

grid.

Figures 4g, 4h et 4i are particularly interesting, because they show what happens when the

dimension of the neurons grid is less than the number of freedom degrees. In this case, the

distribution is in 2 dimensions, while the network grid is only monodimensional. The \�

i

; �

w

"

relation emphasizes the folds of the network. Also, we should remark that, despite of the

neurons number (and so folds number) raise, the general shape of the \�

i

; �

w

" points cloud

remains approximatively the same.

The same remark should be done for �gures 4j and 4k, where the distribution was a kind of

propeller. This time, the mean remains growing more longer.

In �gures 4l et 4m, the distribution was bimodal. Then, the mean and the standard deviation

curves do not give suitable information anymore. However, the \�

i

; �

w

" points clouds emphasize

the bimodality of the distribution. Let us remark also that the lower part of the clouds looks like

the complete cloud obtained with the same distribution, but within only one mode (the lower

part of the cloud of �g. 4l looks like those of �gs. 4g, 4h et 4i, and the lower part of the cloud

of �g. 4m looks like those of �g. 4b).

Finally, �gure 4n shows the \�

i

; �

w

" relation obtained with the \horseshoe" 3D distribution.

The \organization length" seems here not to excess 8, because of the fold of the distribution.
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8 Conclusion

The analysis of the Kohonen network which self-organizes in a high-dimensional space is di�cult.

Indeed, there is no direct method to observe the network as when the input space is only in

2 dimensions. The diversity of the potential applications of this network is very large, but we

are sure that a lot of possible users hesitate considering the relative lack of methods to analyse

the network organization quality. That is the reason why we feel the necessity to develop such

methods, as those ones discribed in this paper.

We have described several methods already used by other works, in particular the measure

of the neurons excitation variance, which shows how the set of neurons quantizes the input

space. This measure does not give any information about the other fundamental property of the

Kohonen self-organization algorithm, i.e. the unit order that allows a neighbourhood relations

conservation between the stimuli and the neurons.

So we proposed a complementary method which emphasizes the quality of this order (good

quality or bad one). On the other hand, this method does not give any information about the

quantization quality, because it does not take into account the input distribution.

Besides, we believe that only a set of several measures and representations complementar to

each others will provide an exhaustive information on the network state and its convergence.
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Figure 4: Examples of the representation of the weight distances in function of the Kohonen grid unit

index distance for several network con�gurations (see text).
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Figure 4 (continued)
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