
Proc. of 15th workshop GRETSI, sep. 1995, Juan-Les-Pins, FranceCCA: \Curvilinear Component Analysis"Pierre Demartines� and Jeanny H�eraultINPG, Labo. TIRF, 46 av. F�elix-Viallet, F-38031 Grenoble, France(*): now with CSEM, Maladi�ere 71, CH-2007 Neuchâtel, Switzerlande-mail: demartin@tirf.inpg.fr, herault@tirf.inpg.frR�esum�e : L'ACC est un r�eseau de neurones auto-organis�equi donne une carte de la sous-vari�et�e d'un nuage de donn�ees engrandes dimensions non lin�eairement d�ependantes. Le principeest de construire une relation entre un espace d'entr�ee (les don-n�ees) et un espace de sortie (la carte) au moyen d'un ensemblede neurones ayant chacun deux vecteurs-poids : un pour l'entr�eeet l'autre pour la sortie. Apr�es avoir quanti��e la distribution parles vecteurs d'entr�ee, les distances entre ces vecteurs sont copi�eesdans l'espace de sortie, tout en favorisant les petites distancesde sortie. On obtient alors le d�epliage de la vari�et�e des donn�eesavec r�eduction de dimension. Apr�es apprentissage, le même algo-rithme peut être utilis�e pour projeter continûment n'importe quelpoint de la distribution, avec d'excellentes caract�eristiques en in-terpolation et en extrapolation. L'ACC peut être employ�ee dansplusieurs domaines comme la fusion de donn�ees, l'appariement degraphes, l'analyse et la surveillance de proc�ed�es industriels, la d�e-tection de pannes dans des machines, la cartographie de conceptset le routage adaptatif en t�el�ecommunications.
Abstract : CCA is a self-organizing neural network whichgives a revealing low-dimensional mapping of the submanifold of ahigh-dimensional and non linearly related data set. The principleis to build a relation between an input space (data) and an out-put space (the expected mapping) through a set of neurons, eachhaving two weight vectors: one for the input and the other onefor the output. After driving the input vectors to a vector quanti-zation of the input data set, the distances between input vectorsare copied in the output space, while favouring short-range outputdistances. Then, one obtains the unfolding of the data subman-ifold together with a dimension reduction. After learning, thesame projection algorithm can be used to map continuously anypoint of the distribution, leading to excellent interpolation andextrapolation properties, which is an original result. CCA can beused in several domains such as data fusion, graph matching, in-dustrial process monitoring or analysis, faults detection in devices,concept mapping and adaptive routing in telecommunications.1 IntroductionThe Kohonen's Self-Organizing Maps (SOM) are a kindof arti�cial neural network historically inspired by sen-sory maps found in biology ([17, 11, 12]). They are wellknown for their ability to provide a data mapping whereboth sample number and dimensionality are reduced,and can be viewed as a non linear extension of PrincipalComponent Analysis (PCA) [2, 15, 14]. However, SOMhave a major drawback: the mapping is done toward agrid of neurons whose shape is a priori �xed and maynot comply with the one of the data submanifold, lead-ing to confuse mapping. The grid is generally rectangu-lar or hexagonal, and for most applications (especiallywith high-dimensional data space), it is even chosen asa square because of the lack of further knowledge aboutthe real shape of the data submanifold.We have proposed a new model, initially called VQPneural network (\Vector Quantization and Projection",[8, 7]) which overcomes this drawback. The functionlooks like that of Kohonen network, that is, a vec-tor quantization in addition with a topologically cor-rect mapping (at least locally). However, the principleis completely di�erent: instead of performing a vec-
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Figure 1: VQP network structure and an illustration of its func-tion. Here, a 2-D mapping of a text which is folded onto a 3-D\
ypaper" is done. In essence, this function consists in reveal-ing the underlying submanifold of a data set through unfoldingand dimension reduction, leading to the concept of \CurvilinearComponent Analysis".tor quantization under the constraint of a prede�nedneighborhood between neurons, quantization and map-ping functions are separately performed by two layersof connections (�gure 1).The input vectors are forced to become prototypes ofthe distribution by means of any of the several existingmethods of vector quantization. Each neuron has also



a vector pointing towards position within a continuousoutput space the dimension of which is the only prede-�ned characteristic. At the beginning, output vectorsare randomly initialized. Then, the learning algorithmconsists to move them with respect to each other in or-der to reproduce as much as possible the con�gurationof the input vectors. These output positions are totallyfree in the space (conversely to SOM where they arelocked onto a grid). Therefore, a much larger variety ofdistributions can be mapped while avoiding dead units.This \Curvilinear Component Analysis" (CCA) is auseful method for redundant and non linear data struc-ture representation. It provides revealing curvilinearviews of even strongly folded structures whereas Princi-pal Component Analysis (PCA) or other linear methodsfail to give such a suitable information. For example,�gure 1 shows this ability to map and represent foldedstructures.2 AlgorithmConsider N neurons whose n-dimensional input vec-tors fxi ; i = 1; : : : ; Ng quantize the input distribution(see for example [1, 9, 8]). Their p-dimensional out-put vectors fyig should copy the topology of the xi's.In order to do that, Euclidean distances between xi's:Xij = d(xi;xj) are considered. Corresponding dis-tances in the output space are Yij = d(yi;yj). Thegoal is to force Yij to match Xij for each possible pair(i; j). Since this is not possible when manifold \un-folding" is needed for reducing the dimension from nto p, the matching of short-range output distances isfavoured by a monotically decreasing weighting func-tion of Yij 's. Then we derive an energy function to beminimized: E = 12Xi Xj 6=i (Xij � Yij)2F (Yij) (1)with F (Yij) � 0 a decreasing function of Y , in order tofavour local topology conservation.The minimization is not made through a strict gra-dient descent. We prefer a simple new procedure thatis equivalent in average, but which is much quicker andallows to escape from casual local minima of energy.In a conventional stochastic gradient descent step,the output vector yi of a randomly selected neuron iwould be adapted accordingly to:�yi = ��riE = �Xj 6=iG(Xij; Yij)(yi � yj); (2)where riE denotes the gradient of E with respect toyi, andG(Xij; Yij) = Xij� YijYij �2F (Yij)� (Xij� Yij)F 0(Yij)� :

a bcFigure 2: Mapping of a folded distribution. (a): input distri-bution and input weights. (b): output weights and continuousprojection of the input distribution. (c): dy � dx representation,showing that the mapping is very accurate only locally: for smalldistances Yij, Xij are strongly non linear: for large output dis-tances, Yij and Xij are not well correlated. However, the topologyis locally preserved.(2) is a sum of radial attractions or repulsions due toall neurons j 6= i. This rule, that we call \intravertedgradient" su�ers of several drawbacks. Only one neuronis adapted at a time, thus the adaptation of all neuronsis heavy (complexity in order O(N2) for updating eachneuron once). It is slow, because the sum produces a\average e�ect" that leads units to have small move-ments. Moreover, it can fall into local minima.In contrast, a step of the empiric procedure that weuse (and that we call \extraverted gradient") consists inrandomly selecting a neuron i, momentarily freezing itsoutput weight vectors yi, and radially moving all yj 6=iregardless of the interactions among them. Consideringa stepwise version of F (that is, with F 0 = 0), we �nallyobtain the simple rule:�yj = �F (Yij)Xij�YijYij (yj � yi) 8j 6= i: (3)Though all the yj (but i) are moved at each step,this procedure has only a complexity of order O(N),whereas the equivalent stochastic gradient descent isof O(N2). Despite of possible momentarily energy in-creases, the mean of the updates is proportional to theopposite of the energy gradient (E(�yj) = � �NrjE),therefore the energy decreases in average [7]. This sim-ple and empiric rule is very e�cient: for a network of athousand of neurons (N = 1000), generally only about�fty iterations are su�cient to reach a perfectly orga-nized output state (E � 10�6 of the max distance Xij),when the submanifold is linear. When the submanifoldis not linear, thus an unfolding has to be done, it takes



a bcFigure 3: Mapping of two interlaced rings. The input space isin 3 dimensions. The output space (constraint to 2 dimensions)gives the mapping found: the network cut the rings in order toput them on the plane.more steps to converge (some thousands), but remainsmuch faster than a stochastic gradient.F (Y ) = exp(�Y=�y) or even F (Y ) = 11(Y ��y) (stepfunction) can be used as weighting function in (1). The\neighborhood radius" �y, as well as the adaptationfactor � are decreasing with time, like in usual Koho-nen's SOM.This algorithm compares favourably to existing nonlinear algorithms, such as the Sammon's Non LinearMapping algorithm (NLM) [16] which is N times slower(in CPU time) and which fails to �nd good representa-tions of strongly folded structures (because the weight-ing of energy terms depends on input distances (Xij)only).3 Output dimension and \dy � dx"representationThe output space is continuous and the mapping auto-matically takes the relevant shape. However, its dimen-sion remains, as for Kohonen maps, a parameter thathas to be �xed at the beginning. This dimension shouldcorrespond to the number of degrees of freedom of thedata distribution, i.e. the number of free parameters inthe phenomenon underlying the data set. This numbercan be roughly estimated through a fractal dimensionanalysis of the data set.Thus, we propose to base the choice of output di-mension on fractal dimension analysis of the data set,in addition to any initial knowledge that can be col-lected about the data set and the underlying process.Then, this choice can be tuned in regard to a mappingquality representation explained hereafter.

a bFigure 4: Projection of a circle with a VQP network havinglearned a small square. (a) Input space, with the weights quan-tizing the learned distribution (small square), and the test distri-bution of circular shape. (b) Output space, with output learnedweights, and the interpolation/extrapolation of the circle.In order to check the topology-preservation of Koho-nen map, we have proposed in [6, 5] a representationwhich is called \dy � dx". It consists in the joint dis-tribution of input and output distances between pairsof neurons: for each possible pair, one plots a pointat [dy; dx], where dy is the physical distance betweenthe neurons (the distance on the grid) and dx the dis-tance between their weight vectors. In a well topology-preserving mapping, dy should be proportional to dx,at least for small dy's. This representation is directlyusable in the frame of CCA: dx is simply equivalent toXij and dy corresponds to Yij .In this representation, a locally correct mapping isshown by a straight line (of slope 1) near the origin.On the other hand, strong unfolding is revealed by cur-vature and spreading of the dy; dx characteristic. Thisis illustrated in �gure 2.4 Continuous projection and back-ward projectionThe relation x ! y is quantized be N prototypes(xi ! yi). To obtain the continuous projection of anypoint x0 in the distribution, the same function (1) isminimized, but only for point y0 that should be theprojection of x0. Thus, instead of moving each vec-tor with respect to each other, only one point y0 isadapted while keeping all others �xed. Therefore, thispoint y0 is searched with respect to the yi's in functionof the measured distances Xi0 between x0 and the xi's.This procedure gives very accurate interpolation, butalso good extrapolation, which is a particularly newfeature. This task is generally not or badly done bymost networks whose target is to continuously link anoutput with an input space, and which generally per-form interpolation only. For example, with RBF net-works (\Radial Basis Functions", [13]), or some SOMimplementations ([4, 3]) or with \Counter-Propagationnetwork" ([10]), this interpolation is made by compu-



tation of a center of gravity weighted by kernel func-tions. Since these kernels are de�ned positive (gener-ally Gaussian), extrapolation is impossible. Thus, sincethe quantization process does not place any vector atthe distribution boundaries, there is a stripe aroundthe weight vectors which is not correctly mapped. Inaddition, the interpolation accuracy strongly dependson the kernel radii: too small radii give a projectionwhere points are clustered around the yi's, while toolarge kernels will cluster the whole distribution aroundthe center of gravity of the yi's. Thus, adaptation ofthese radii is a complex task which depends from sev-eral constraints and slows down the learning process.In contrast, our method performs extrapolation aswell as interpolation, as it is shown in �gure 4. It ishomogeneous with the learning algorithm and does notneed other parameters (such as radii or local Jacobianmatrices). However, each point of the continuous pro-jection needs several adaptation steps, and the param-eters schedule during this \sub-convergence" is empiricup to now.In order to obtain backward projection, input and out-put are simply swapped and the same scheme is used.5 DiscussionThe VQP tool can be seen as a complete homeomor-phism between a data set structure and a map of thisstructure that has been found in a self-learning way. Itreveals the structure of the underlying submanifold of adata set through a relevant map whose dimension is se-lectable (and has to be set accordingly to fractal dimen-sion analysis of the data set and any initial knowledgeabout the underlying process).Finding structure in high dimensional distributionsand mapping them towards lower dimensional space arevery generic tasks. Up to now, we have successfullyapplied this Curvilinear Component Analysis to a largearea of applications, including:� Data fusion. Audition and vision fusion forphonemes mapping, localization tasks (digitizer,GPS, ...), time series learning, super-resolution al-gorithms, fault detection in circuits and machines,geopolitic analysis, textures mapping.� Process monitoring. State graph extraction, nu-clear plant monitoring.� Construction of metrics. Adaptive packet rout-ing in ATM telecommunication network, graphmatching, knowledge representation and conceptmapping.In fact, these few examples are only tracks for realapplications, they show the large number of potential
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