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CCA: “Curvilinear Component Analysis”

Pierre Demartines® and Jeanny Hérault

INPG, Labo. TIRF, 46 av. Félix-Viallet, F-38031 Grenoble, France
(*): now with CSEM, Maladiere 71, CH-2007 Neuchatel, Switzerland
e-mail: demartin@tirf.inpg.fr, herault@tirf.inpg.fr

Résumé :
qui donne une carte de la sous-variété d’un nuage de données en

I’ACC est un réseau de neurones auto-organisé

grandes dimensions non linéairement dépendantes. Le principe
est de construire une relation entre un espace d’entrée (les don-
nées) et un espace de sortie (la carte) au moyen d’un ensemble

de neurones ayant chacun deux vecteurs-poids : un pour I'entrée

et Pautre pour la sortie. Aprés avoir quantifié la distribution par
les vecteurs d’entrée, les distances entre ces vecteurs sont copiées
dans D’espace de sortie, tout en favorisant les petites distances
de sortie. On obtient alors le dépliage de la variété des données
avec réduction de dimension. Apres apprentissage, le méme algo-
rithme peut étre utilisé pour projeter continiment n’importe quel
point de la distribution, avec d’excellentes caractéristiques en in-
terpolation et en extrapolation. L’ACC peut étre employée dans
plusieurs domaines comme la fusion de données, ’appariement de
graphes, I’analyse et la surveillance de procédés industriels, la dé-
tection de pannes dans des machines, la cartographie de concepts
et le routage adaptatif en télécommunications.

1 Introduction

The Kohonen’s Self-Organizing Maps (SOM) are a kind
of artificial neural network historically inspired by sen-
sory maps found in biology ([17, 11, 12]). They are well
known for their ability to provide a data mapping where
both sample number and dimensionality are reduced,
and can be viewed as a non linear extension of Principal
Component Analysis (PCA) [2, 15, 14]. However, SOM
have a major drawback: the mapping is done toward a
grid of neurons whose shape is a priori fixed and may
not comply with the one of the data submanifold, lead-
ing to confuse mapping. The grid is generally rectangu-
lar or hexagonal, and for most applications (especially
with high-dimensional data space), it is even chosen as
a square because of the lack of further knowledge about
the real shape of the data submanifold.

We have proposed a new model, initially called VQP
neural network (“Vector Quantization and Projection”,
[8, 7]) which overcomes this drawback. The function
looks like that of Kohonen network, that is, a vec-
tor quantization in addition with a topologically cor-
rect mapping (at least locally). However, the principle
is completely different: instead of performing a vec-
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gives a revealing low-dimensional mapping of the submanifold of a

CCA 1is a self-organizing neural network which

high-dimensional and non linearly related data set. The principle
is to build a relation between an input space (data) and an out-
put space (the expected mapping) through a set of neurons, each
having two weight vectors: one for the input and the other one
for the output. After driving the input vectors to a vector quanti-
zation of the input data set, the distances between input vectors
are copied in the output space, while favouring short-range output
distances. Then, one obtains the unfolding of the data subman-
ifold together with a dimension reduction. After learning, the
same projection algorithm can be used to map continuously any
point of the distribution, leading to excellent interpolation and
extrapolation properties, which is an original result. CCA can be
used in several domains such as data fusion, graph matching, in-
dustrial process monitoring or analysis, faults detection in devices,
concept mapping and adaptive routing in telecommunications.
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Figure 1: VQP network structure and an illustration of its func-
tion. Here, a 2-D mapping of a text which is folded onto a 3-D
“flypaper” is done. In essence, this function consists in reveal-
ing the underlying submanifold of a data set through unfolding
and dimension reduction, leading to the concept of “Curvilinear
Component Analysis”.

tor quantization under the constraint of a predefined
neighborhood between neurons, quantization and map-
ping functions are separately performed by two layers
of connections (figure 1).

The input vectors are forced to become prototypes of

the distribution by means of any of the several existing
methods of vector quantization. Each neuron has also



a vector pointing towards position within a continuous
output space the dimension of which is the only prede-
fined characteristic. At the beginning, output vectors
are randomly initialized. Then, the learning algorithm
consists to move them with respect to each other in or-
der to reproduce as much as possible the configuration
of the input vectors. These output positions are totally
free in the space (conversely to SOM where they are
locked onto a grid). Therefore, a much larger variety of
distributions can be mapped while avoiding dead units.

This “Curvilinear Component Analysis” (CCA) is a
useful method for redundant and non linear data struc-
ture representation. It provides revealing curvilinear
views of even strongly folded structures whereas Princi-
pal Component Analysis (PCA) or other linear methods
fail to give such a suitable information. For example,
figure 1 shows this ability to map and represent folded
structures.

2 Algorithm

Consider N neurons whose n-dimensional input vec-
tors {x; ;i = 1,..., N} quantize the input distribution
(see for example [1, 9, 8]). Their p-dimensional out-
put vectors {y,} should copy the topology of the @;’s.
In order to do that, Euclidean distances between x;’s:
X;; = d(=;,z;) are considered. Corresponding dis-
tances in the output space are Y; = d(y;,y;). The
goal is to force Y;; to match X;; for each possible pair
(i,7). Since this is not possible when manifold “un-
folding” is needed for reducing the dimension from n
to p, the matching of short-range output distances is
favoured by a monotically decreasing weighting func-
tion of Y;;’s. Then we derive an energy function to be
minimized:

F=IY S0 E0y) ()
with F(Y;;) > 0 a decreasing function of Y, in order to
favour local topology conservation.

The minimization is not made through a strict gra-
dient descent. We prefer a simple new procedure that
is equivalent in average, but which is much quicker and
allows to escape from casual local minima of energy.

In a conventional stochastic gradient descent step,
the output vector y, of a randomly selected neuron ¢
would be adapted accordingly to:

Ay, = —aV,F = QZG(XM»YM)(% - yj)v (2)
i#i
where V; I denotes the gradient of F with respect to
y;» and
Xij =Yy

y
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Figure 2: Mapping of a folded distribution. (a): input distri-
bution and input weights. (b): output weights and continuous
projection of the input distribution. (c): dy — dx representation,
showing that the mapping is very accurate only locally: for small
distances Y;;, X;; are strongly non linear: for large output dis-
tances, Y;; and X;; are not well correlated. However, the topology
is locally preserved.

(2) is a sum of radial attractions or repulsions due to
all neurons j # ¢. This rule, that we call “intraverted
gradient” suffers of several drawbacks. Only one neuron
is adapted at a time, thus the adaptation of all neurons
is heavy (complexity in order O(N?) for updating each
neuron once). It is slow, because the sum produces a
“average effect” that leads units to have small move-
ments. Moreover, it can fall into local minima.

In contrast, a step of the empiric procedure that we
use (and that we call “extraverted gradient”) consists in
randomly selecting a neuron ¢, momentarily freezing its
output weight vectors y;, and radially moving all y,,
regardless of the interactions among them. Considering
a stepwise version of F' (that is, with F’ = 0), we finally
obtain the simple rule:

Xi=Ys
Ay; = aF(Yy) =45 (y; — ¥3)

Vi ()

Though all the y; (but ¢) are moved at each step,
this procedure has only a complexity of order O(N),
whereas the equivalent stochastic gradient descent is
of O(N?). Despite of possible momentarily energy in-
creases, the mean of the updates is proportional to the
opposite of the energy gradient (E(Ay;) = -V, E),
therefore the energy decreases in average [7]. This sim-
ple and empiric rule is very efficient: for a network of a
thousand of neurons (N = 1000), generally only about
fifty iterations are sufficient to reach a perfectly orga-
nized output state (£ < 107° of the max distance Xij),
when the submanifold is linear. When the submanifold
is not linear, thus an unfolding has to be done, it takes



Figure 3: Mapping of two interlaced rings. The input space is
in 3 dimensions. The output space (constraint to 2 dimensions)
gives the mapping found: the network cut the rings in order to
put them on the plane.

more steps to converge (some thousands), but remains
much faster than a stochastic gradient.

F(Y)=exp(=Y/Ay)oreven F(Y)=1(Y —X\,) (step
function) can be used as weighting function in (1). The
“neighborhood radius” A,, as well as the adaptation
factor a are decreasing with time, like in usual Koho-
nen’s SOM.

This algorithm compares favourably to existing non
linear algorithms, such as the Sammon’s Non Linear
Mapping algorithm (NLM) [16] which is N times slower
(in CPU time) and which fails to find good representa-
tions of strongly folded structures (because the weight-
ing of energy terms depends on input distances (X;;)
only).

3 Output dimension and “dy — dz”
representation

The output space is continuous and the mapping auto-
matically takes the relevant shape. However, its dimen-
sion remains, as for Kohonen maps, a parameter that
has to be fixed at the beginning. This dimension should
correspond to the number of degrees of freedom of the
data distribution, i.e. the number of free parameters in
the phenomenon underlying the data set. This number
can be roughly estimated through a fractal dimension
analysis of the data set.

Thus, we propose to base the choice of output di-
mension on fractal dimension analysis of the data set,
in addition to any initial knowledge that can be col-
lected about the data set and the underlying process.
Then, this choice can be tuned in regard to a mapping
quality representation explained hereafter.

Figure 4: Projection of a circle with a VQP network having
learned a small square. (a) Input space, with the weights quan-
tizing the learned distribution (small square), and the test distri-
bution of circular shape. (b) Output space, with output learned
weights, and the interpolation/extrapolation of the circle.

In order to check the topology-preservation of Koho-
nen map, we have proposed in [6, 5] a representation
which is called “dy — dz”. It consists in the joint dis-
tribution of input and output distances between pairs
of neurons: for each possible pair, one plots a point
at [dy,dz], where dy is the physical distance between
the neurons (the distance on the grid) and da the dis-
tance between their weight vectors. In a well topology-
preserving mapping, dy should be proportional to dz,
at least for small dy’s. This representation is directly
usable in the frame of CCA: dz is simply equivalent to
X;; and dy corresponds to Y;;.

In this representation, a locally correct mapping is
shown by a straight line (of slope 1) near the origin.
On the other hand, strong unfolding is revealed by cur-
vature and spreading of the dy, dz characteristic. This
is illustrated in figure 2.

4 Continuous projection and back-
ward projection

The relation & — vy is quantized be N prototypes
(z; — y;). To obtain the continuous projection of any
point @ in the distribution, the same function (1) is
minimized, but only for point y, that should be the
projection of xg. Thus, instead of moving each vec-
tor with respect to each other, only one point y, is
adapted while keeping all others fixed. Therefore, this
point y, is searched with respect to the y;’s in function
of the measured distances X, between xg and the x;’s.
This procedure gives very accurate interpolation, but
also good extrapolation, which is a particularly new
feature. This task is generally not or badly done by
most networks whose target is to continuously link an
output with an input space, and which generally per-
form interpolation only. For example, with RBF net-
works (“Radial Basis Functions”, [13]), or some SOM
implementations ([4, 3]) or with “Counter-Propagation
network” ([10]), this interpolation is made by compu-



tation of a center of gravity weighted by kernel func-
tions. Since these kernels are defined positive (gener-
ally Gaussian), extrapolation is impossible. Thus, since
the quantization process does not place any vector at
the distribution boundaries, there is a stripe around
the weight vectors which is not correctly mapped. In
addition, the interpolation accuracy strongly depends
on the kernel radii: too small radii give a projection
where points are clustered around the y,’s, while too
large kernels will cluster the whole distribution around
the center of gravity of the y.’s. Thus, adaptation of
these radii is a complex task which depends from sev-
eral constraints and slows down the learning process.

In contrast, our method performs extrapolation as
well as interpolation, as it is shown in figure 4. It is
homogeneous with the learning algorithm and does not
need other parameters (such as radii or local Jacobian
matrices). However, each point of the continuous pro-
jection needs several adaptation steps, and the param-
eters schedule during this “sub-convergence” is empiric
up to now.

In order to obtain backward projection, input and out-
put are simply swapped and the same scheme is used.

5 Discussion

The VQP tool can be seen as a complete homeomor-
phism between a data set structure and a map of this
structure that has been found in a self-learning way. It
reveals the structure of the underlying submanifold of a
data set through a relevant map whose dimension is se-
lectable (and has to be set accordingly to fractal dimen-
sion analysis of the data set and any initial knowledge
about the underlying process).

Finding structure in high dimensional distributions
and mapping them towards lower dimensional space are
very generic tasks. Up to now, we have successfully
applied this Curvilinear Component Analysis to a large
area of applications, including:

e Data fusion. Audition and vision fusion for
phonemes mapping, localization tasks (digitizer,
GPS, ...), time series learning, super-resolution al-
gorithms, fault detection in circuits and machines,

geopolitic analysis, textures mapping.

¢ Process monitoring. State graph extraction, nu-
clear plant monitoring.

¢ Construction of metrics. Adaptive packet rout-
ing in ATM telecommunication network, graph
matching, knowledge representation and concept

mapping.

In fact, these few examples are only tracks for real
applications, they show the large number of potential

applications of this data analysis method.
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